

Computational Models of Motion

Generative Motion Synthesis

Fatemeh Zargarbashi

08 May 2025

fatemeh.zargarbashi@inf.ethz.ch

Outline

- Recap
- Adversarial methods
- Diffusion-based methods
- Challenges in character animation

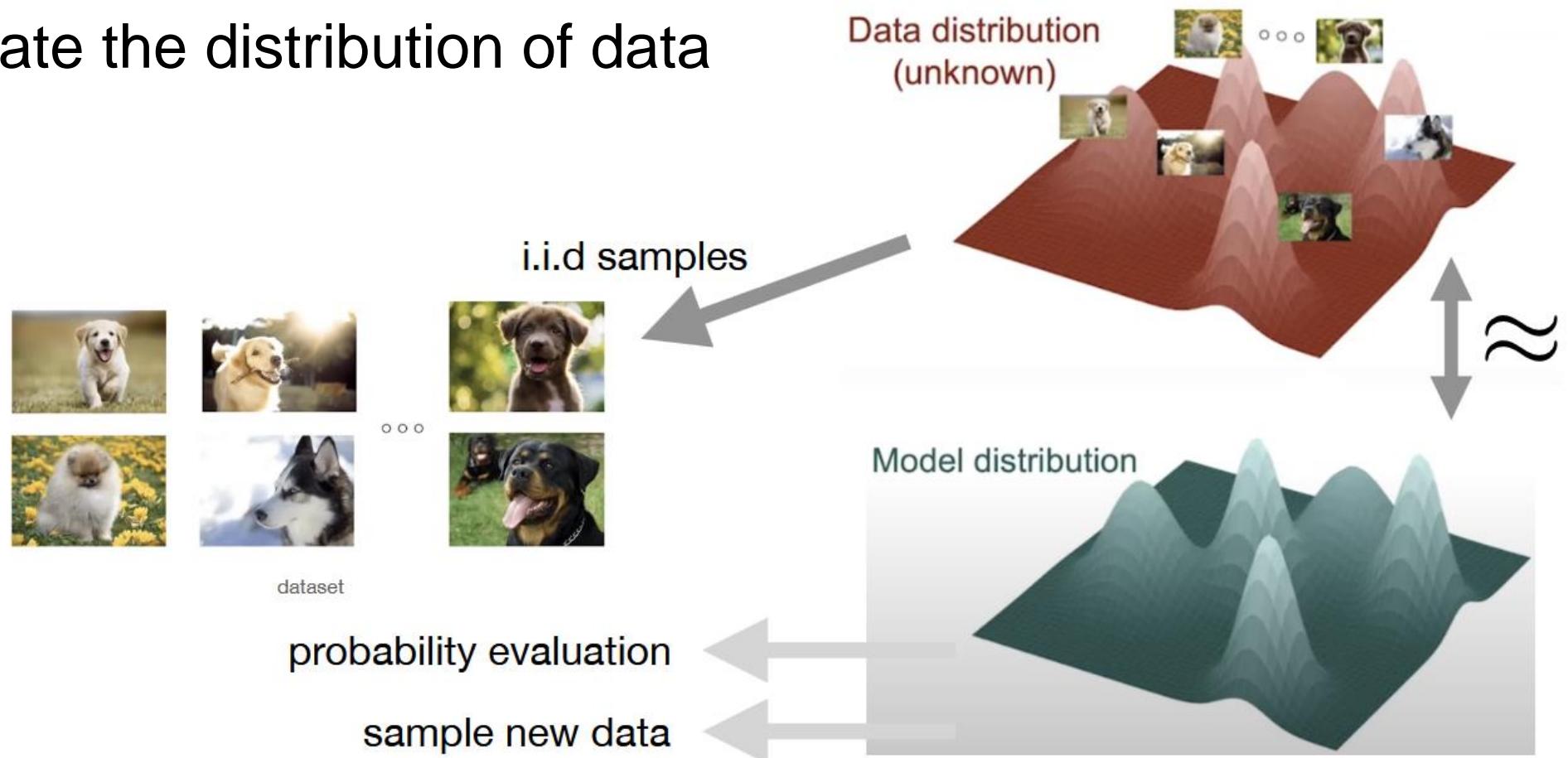
Recap

Given a motion dataset, how do we use it to generate natural and controllable motion?

- Planning based methods: behavior trees, motion graph, motion matching
- Phase-based methods: PFNN, MANN, DeepPhase
- Tracking-based methods for physics-based animation
- Generative models (VAEs) for motion generation

Recap – Generative models

- Estimate the distribution of data

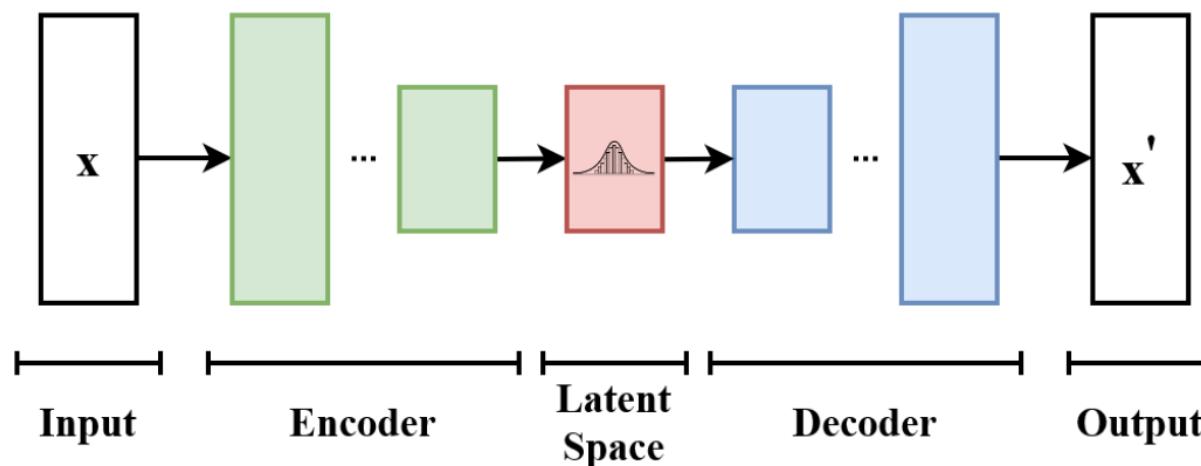


Recap – Generative models

- Auto-regressive models
- Variational Autoencoder (VAE)
- Generative Adversarial Network (GAN)
- Flow-based models
- Energy-based models
- Diffusion models (score-based models)

Recap – VAE

- Our data is generated from some latent variable with fixed distribution.
- Maximize (log-)likelihood of the data



VAEs offer smooth latent spaces but suffer from **blurry or mean-like outputs** (due to Gaussian likelihood and KL penalty).

Today's focus

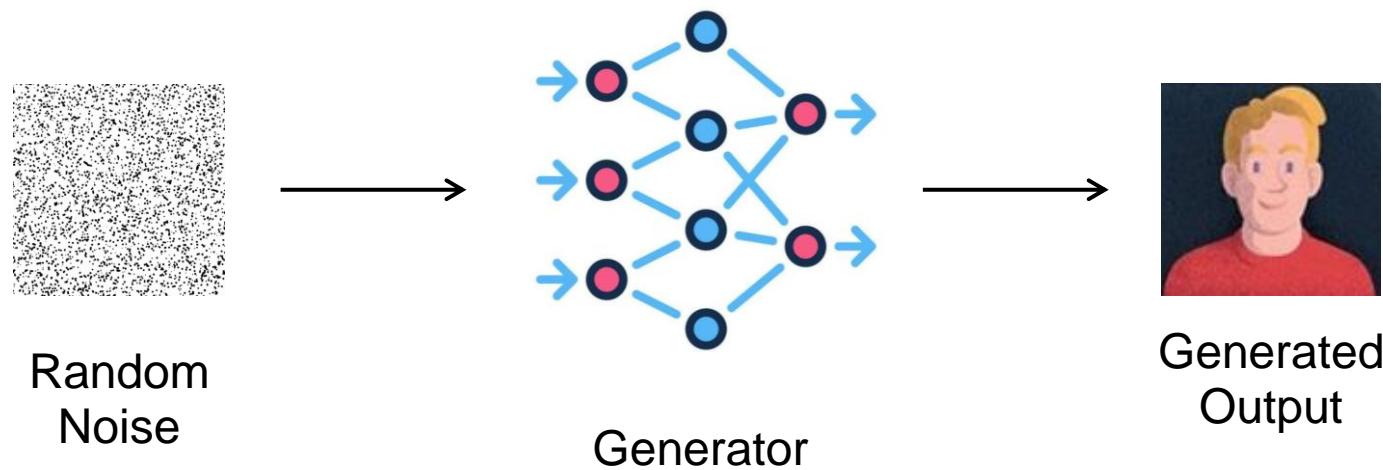
- **Adversarial** methods
- **Diffusion** models
- How these are used in **motion generation** and **character control**
How can we generate highly realistic, diverse, and controllable character motion?
- Both **kinematic** and **physics-based** examples
- Current Challenges in character animation

Outline

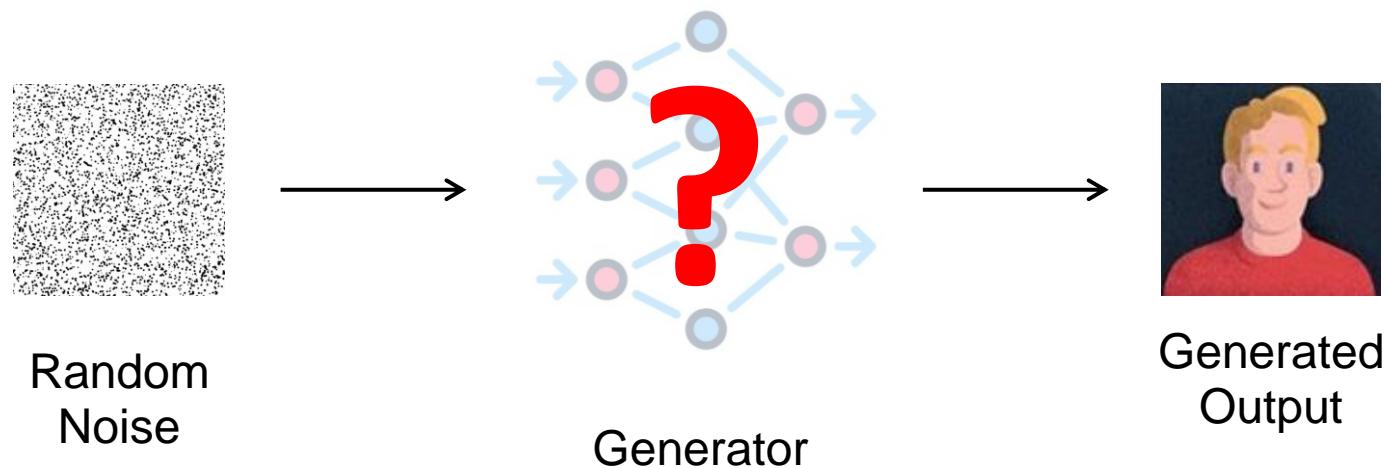
- Recap
- Adversarial methods
- Diffusion-based methods
- Challenges in character animation

Generative Adversarial Networks (GAN)

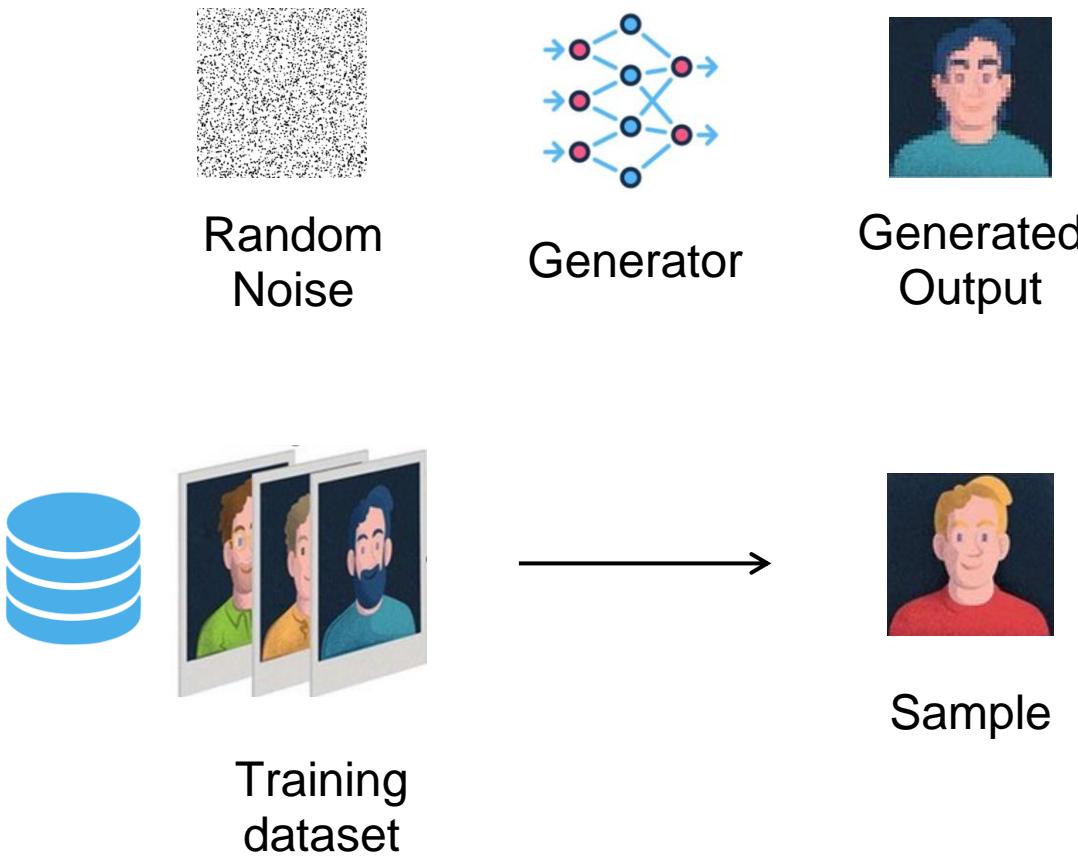
Generative Adversarial Networks (GAN)



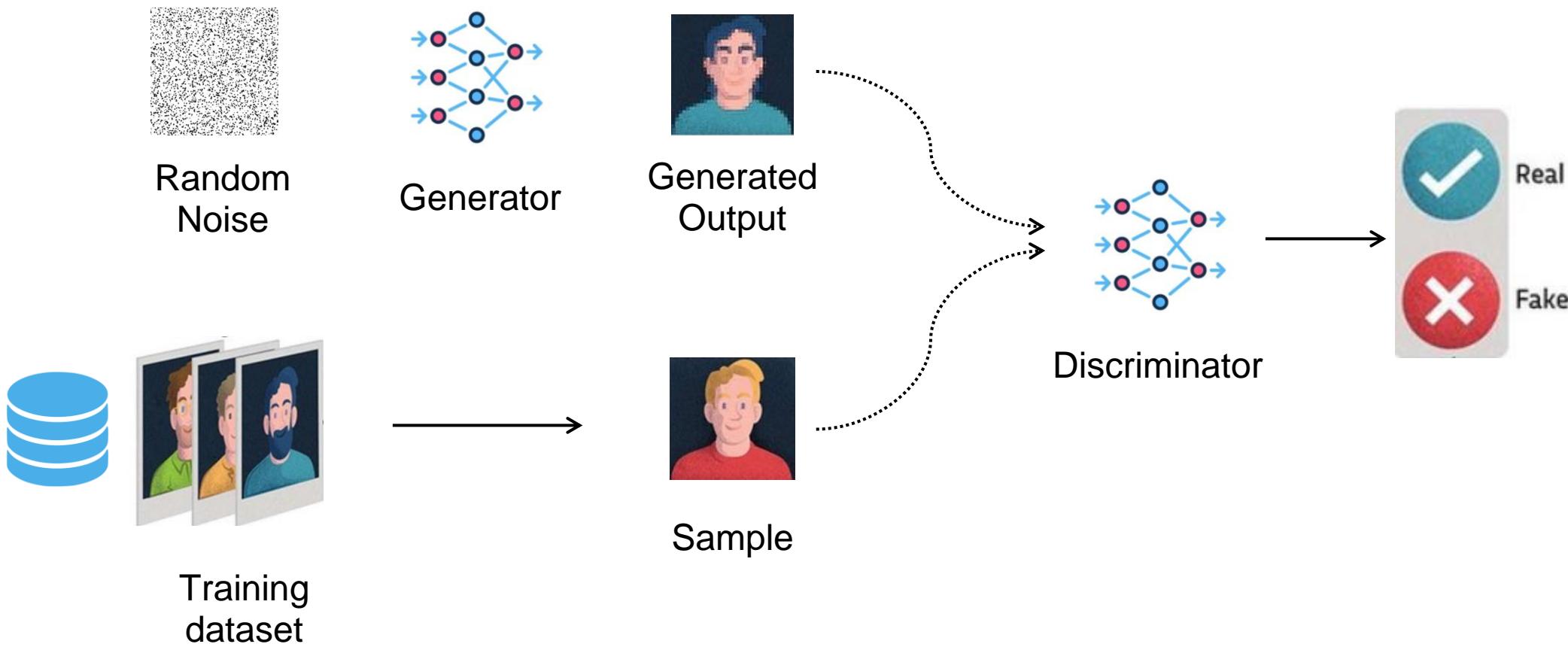
Generative Adversarial Networks (GAN)



Generative Adversarial Networks (GAN)



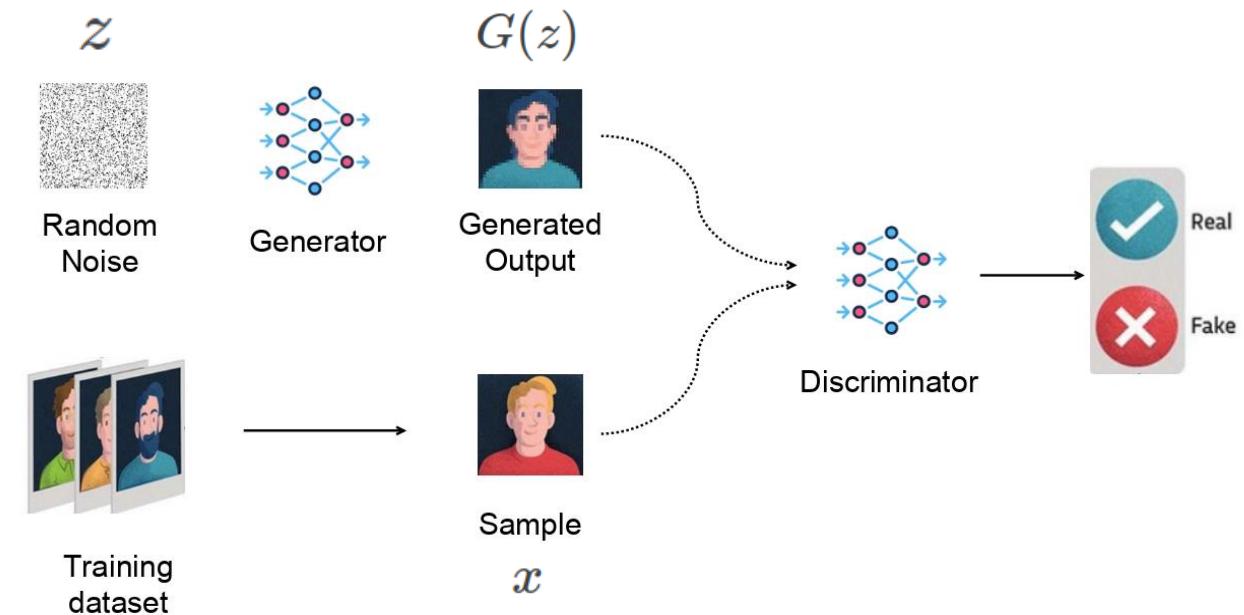
Generative Adversarial Networks (GAN)



Generative Adversarial Networks (GAN)

Discriminator: tries to classify real/fake images

Generator: tries to generate outputs that fool the discriminator into being real



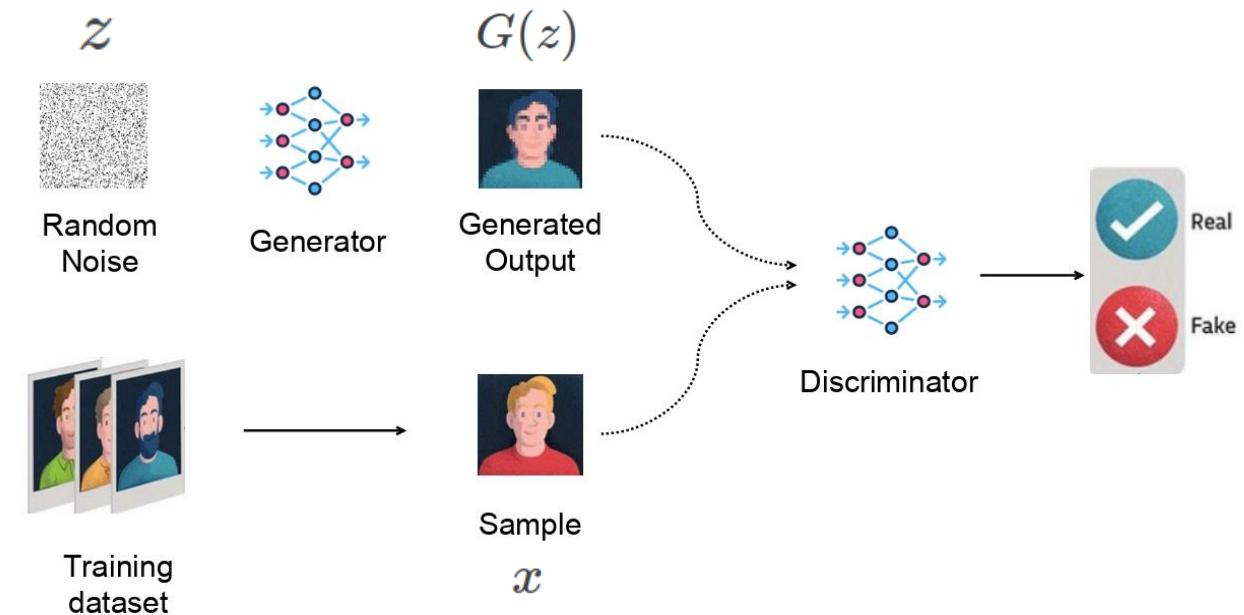
$$L_D = \text{Error}(D(x), 1) + \text{Error}(D(G(z)), 0)$$

$$L_G = \text{Error}(D(G(z)), 1)$$

Generative Adversarial Networks (GAN)

Discriminator: tries to classify real/fake images

Generator: tries to generate outputs that fool the discriminator into being real



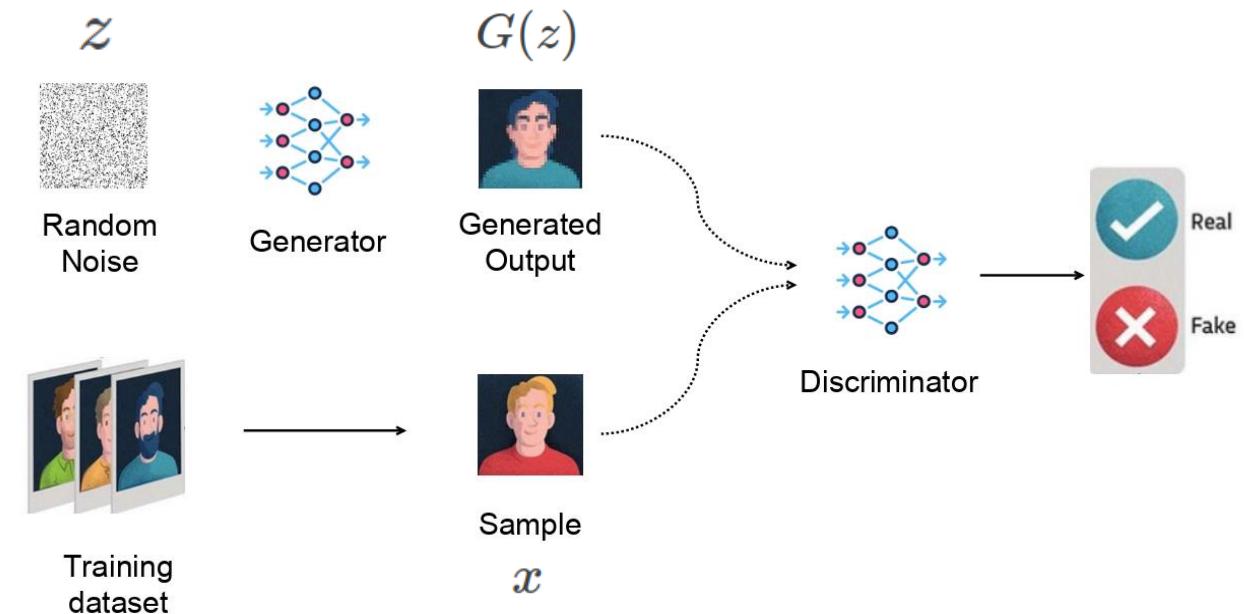
$$L_D = \text{Error}(D(x), 1) + \text{Error}(D(G(z)), 0) = \max_D \{\log(D(x)) + \log(1 - D(G(z)))\}$$

$$L_G = \text{Error}(D(G(z)), 1) = \min_G \{\log(1 - D(G(z)))\}$$

Generative Adversarial Networks (GAN)

Discriminator: tries to classify real/fake images

Generator: tries to generate outputs that fool the discriminator into being real



$$L_D = \text{Error}(D(x), 1) + \text{Error}(D(G(z)), 0) = \max_D \{\log(D(x)) + \log(1 - D(G(z)))\}$$

$$L_G = \text{Error}(D(G(z)), 1) = \min_G \{\log(1 - D(G(z)))\}$$

$$V(G, D) = \min_G \max_D \{\log(D(x)) + \log(1 - D(G(z)))\}$$

Generative Adversarial Networks (GAN)

Training GANs requires **good balance** between generator and discriminator

$$V(G, D) = \min_G \max_D \{\log(D(x)) + \log(1 - D(G(z)))\}$$

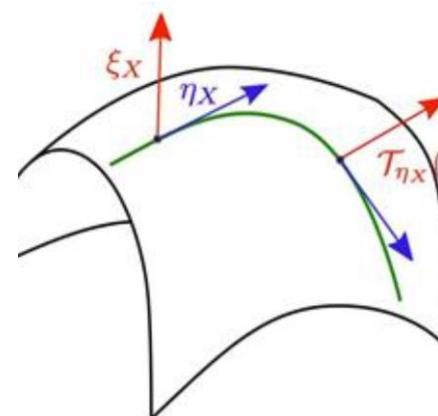
- If discriminator is **strong**:
generator gets no feedback for small improvements
- If discriminator is **weak**:
can't distinguish real/fake, so no informative feedback

Generative Adversarial Networks (GAN)

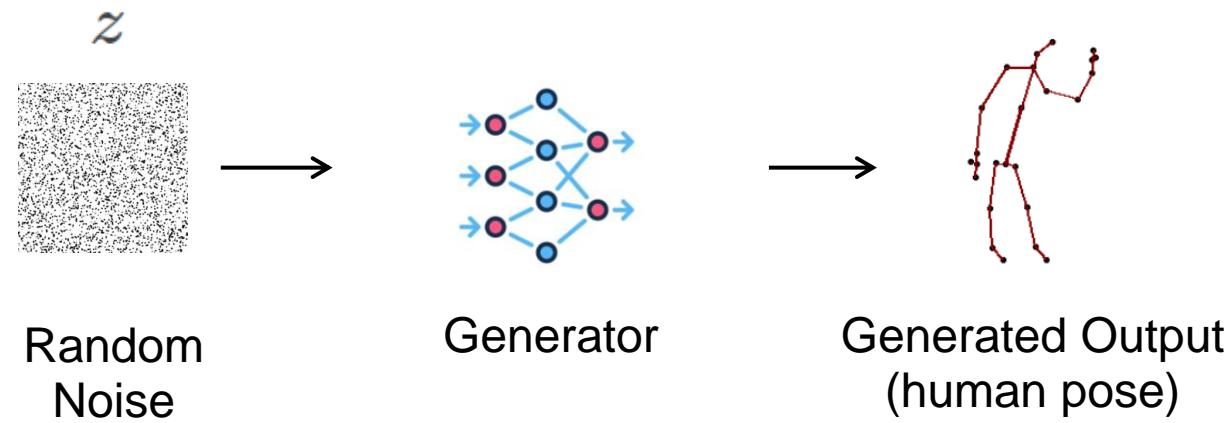
Issue: the discriminator may assign nonzero gradients on the manifold of real data samples

Solution: add gradient penalty to the discriminator loss

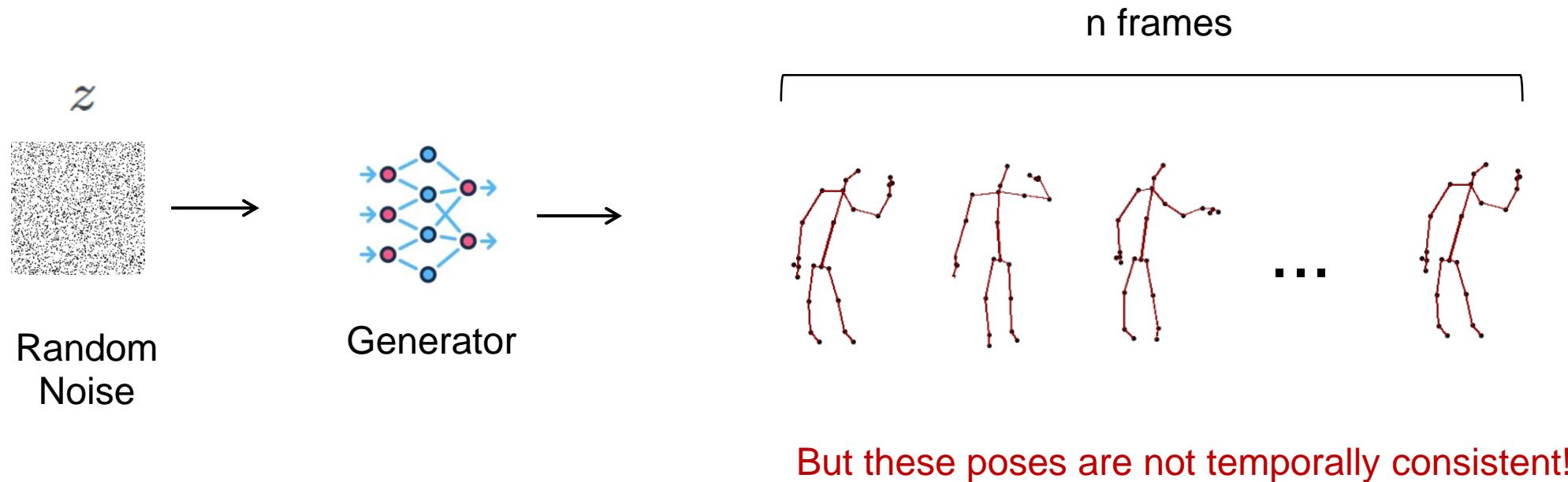
$$\mathbb{E}_{p_{\mathcal{D}}(x)} [\|\nabla D_{\psi}(x)\|^2]$$



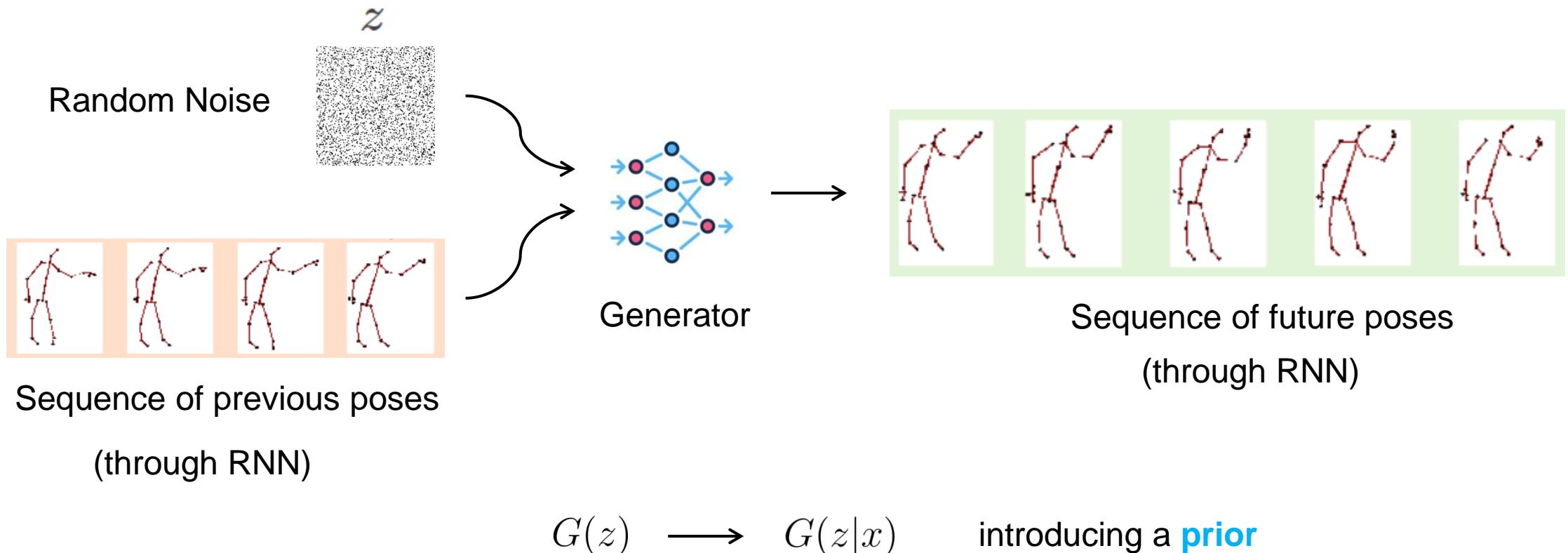
Motion synthesis as pose prediction



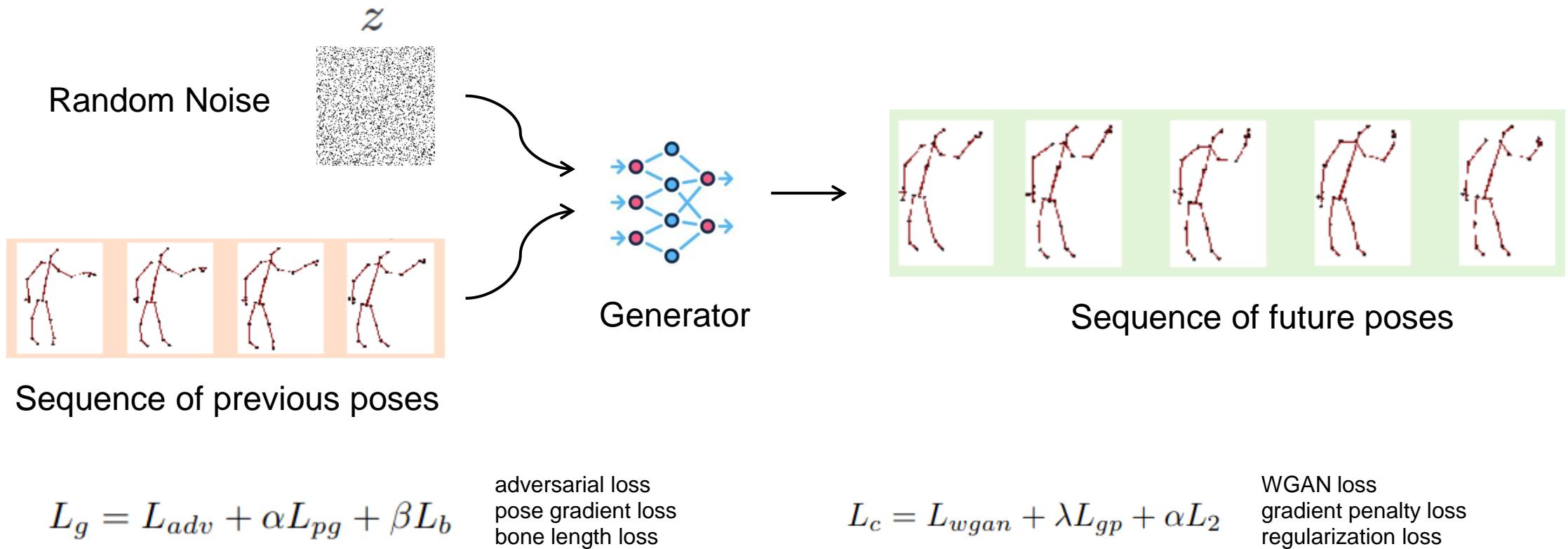
Motion synthesis as pose prediction



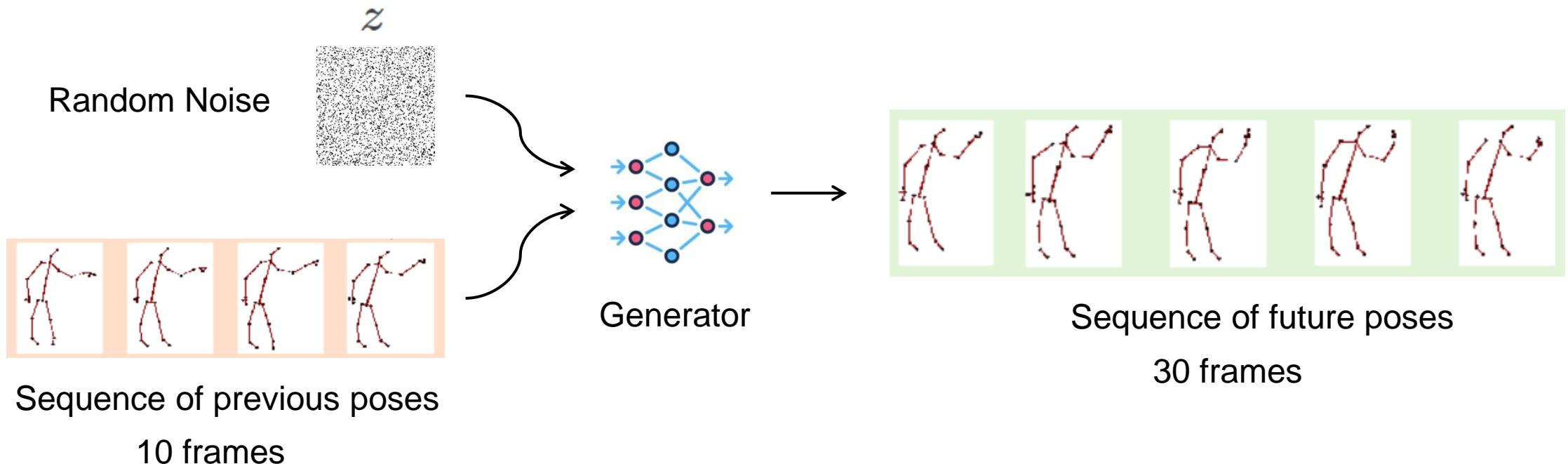
Motion synthesis as pose prediction



Motion synthesis as pose prediction



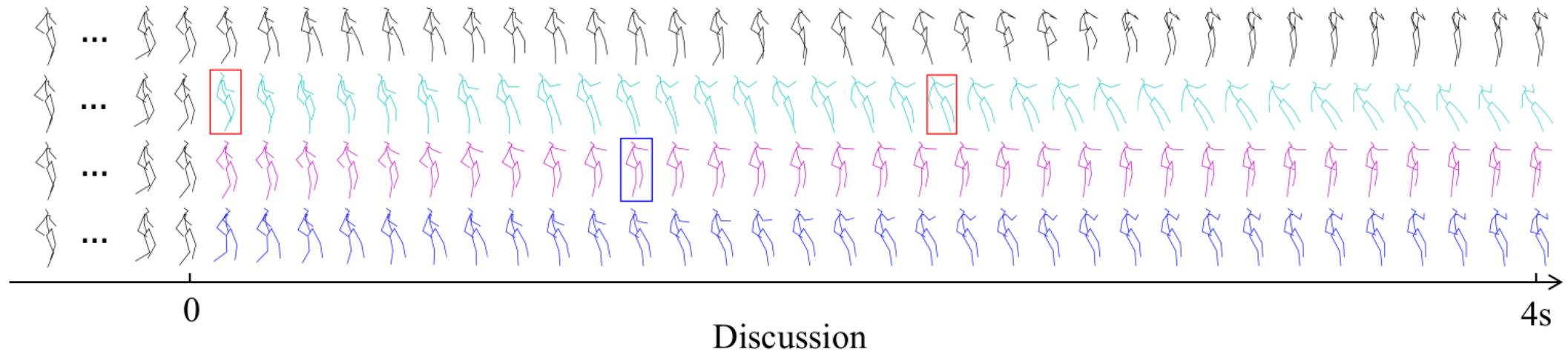
Motion synthesis as pose prediction



Probabilistic model: can get diverse outputs by sampling different z

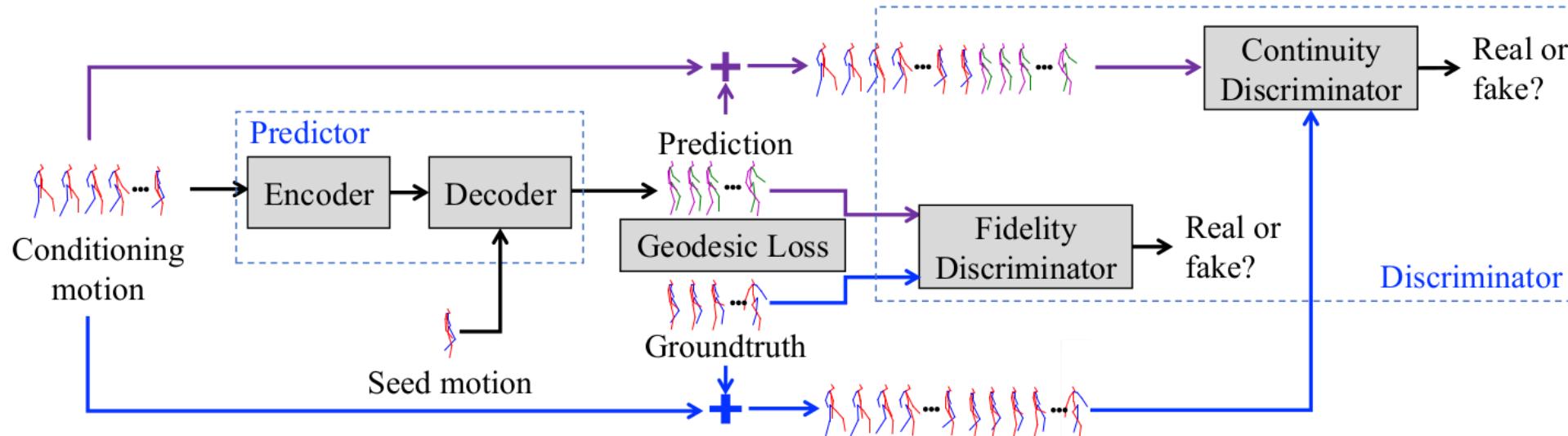
Motion synthesis as pose prediction

Longer horizons



Motion synthesis as pose prediction

Longer horizons

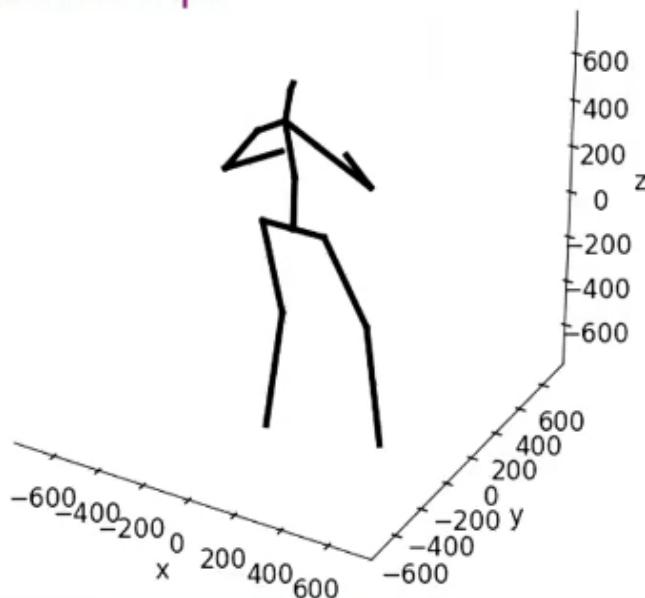


Geodesic distance in $SO(3)$ instead of Euclidean distance
Dual discriminator

Aperiodic Activity: Taking Photo

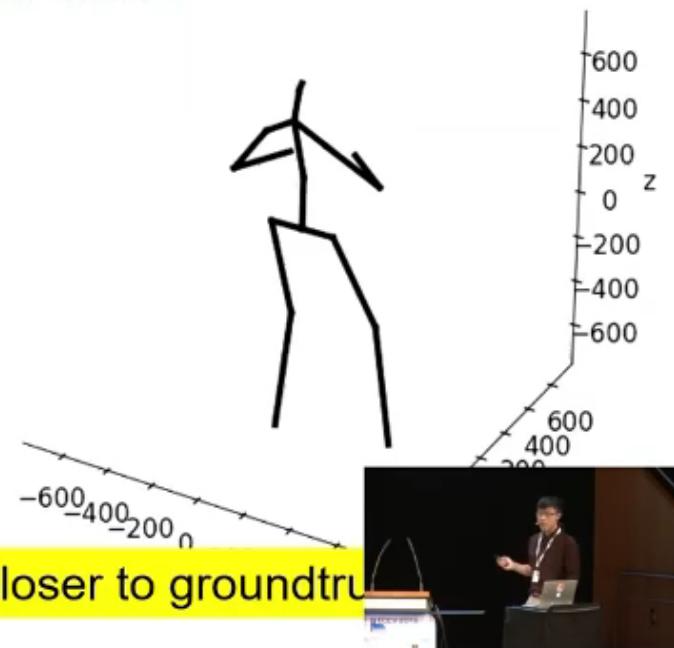
(in slow motion: 400ms displays in 10s)

Residual sup.

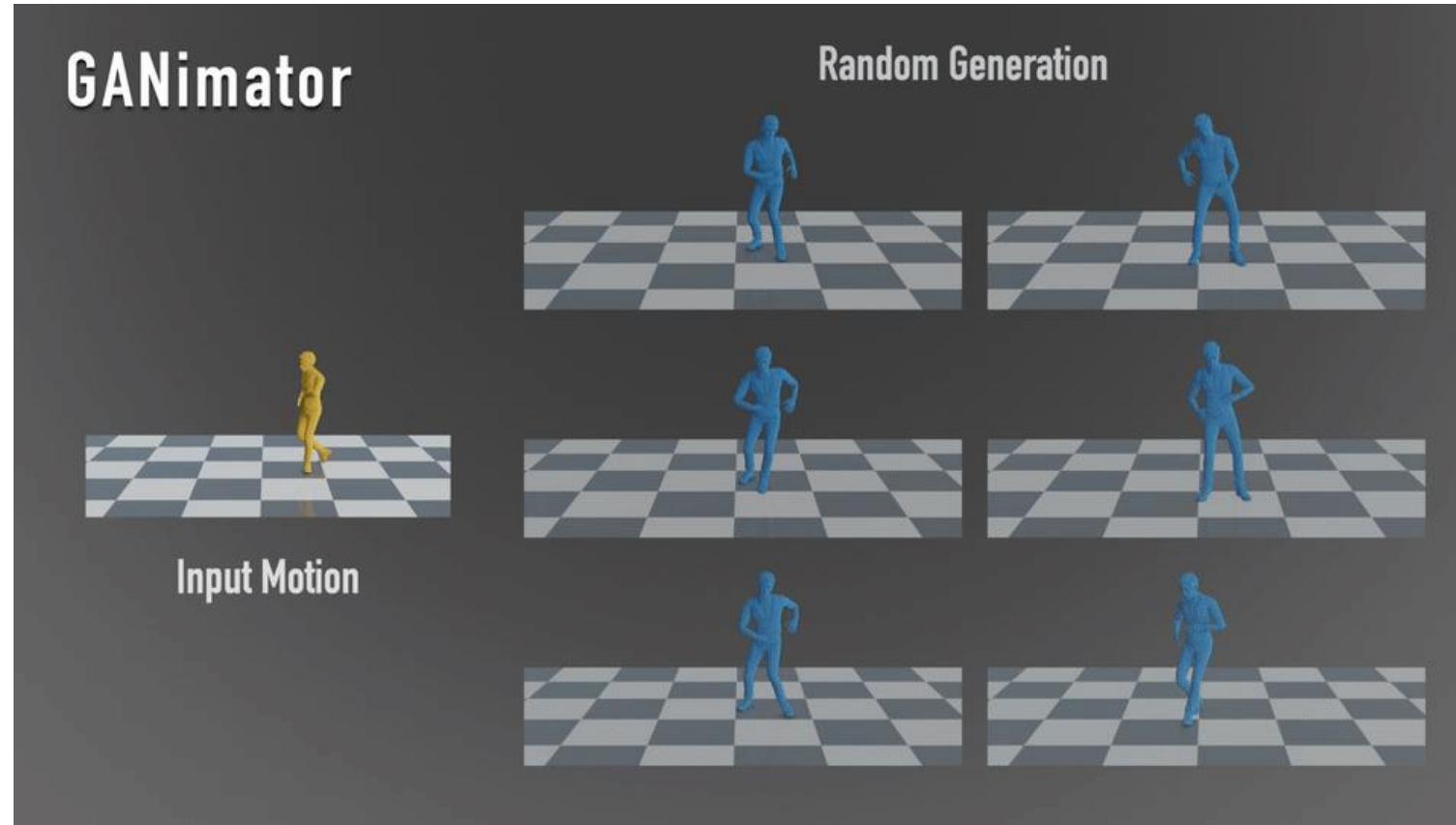


Martinez, Black, and Romero, 2017.

Our Model

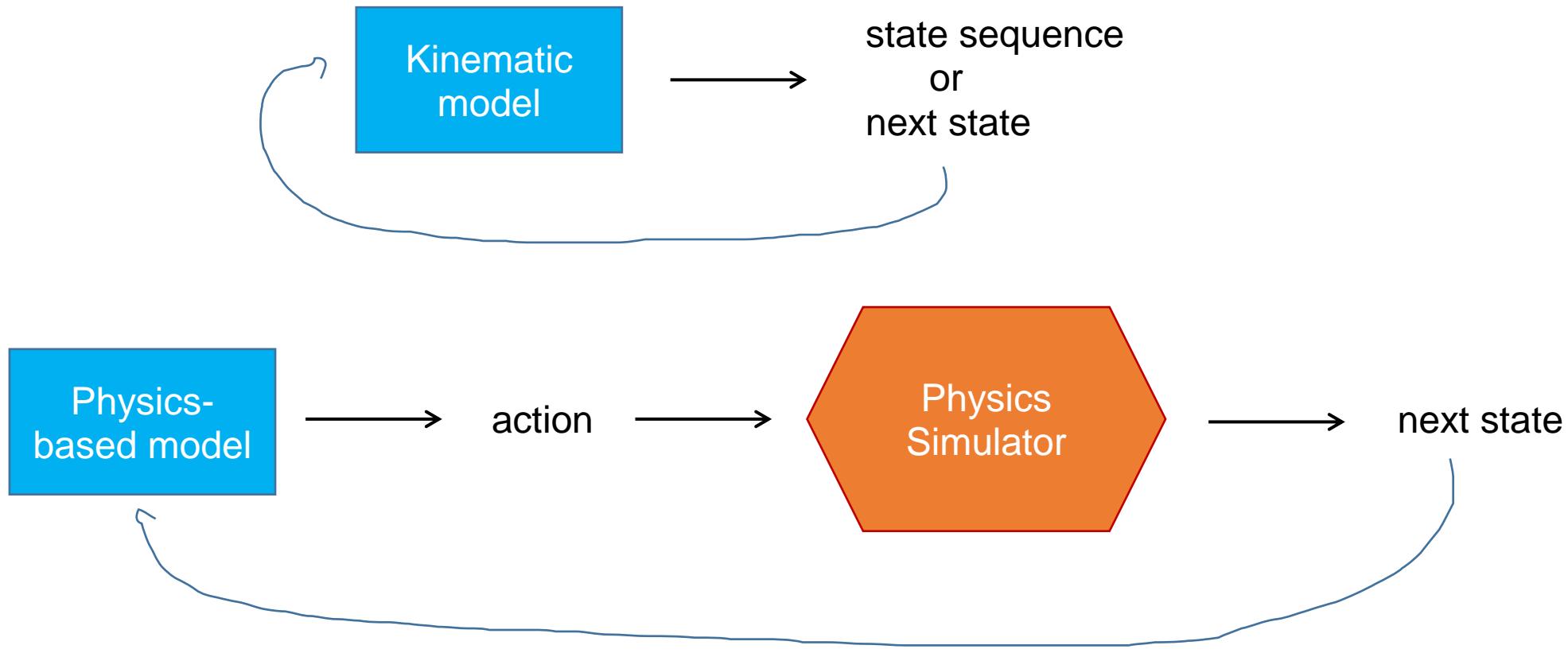


GANs can learn from low amount of data

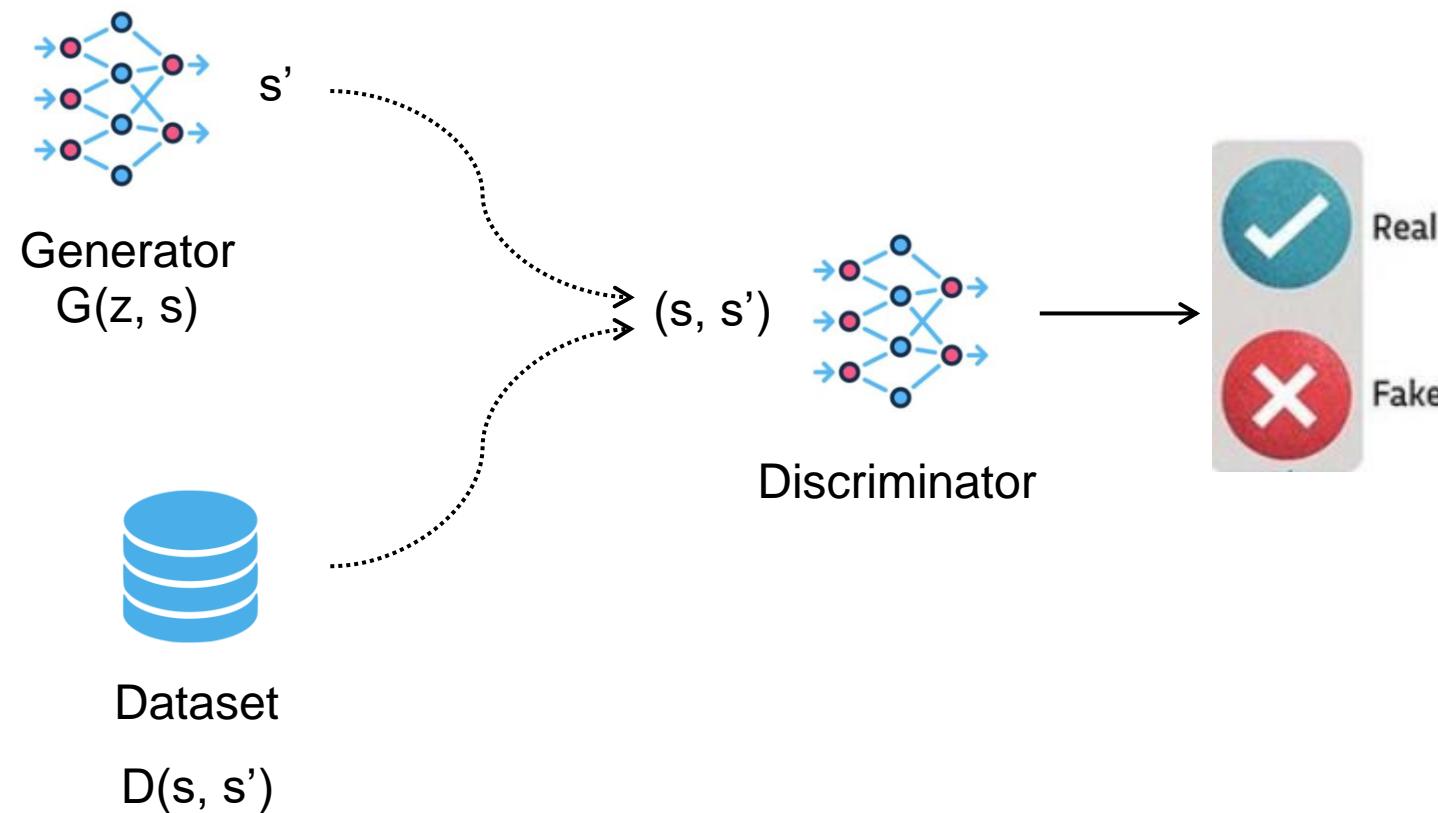


How about physics-based?

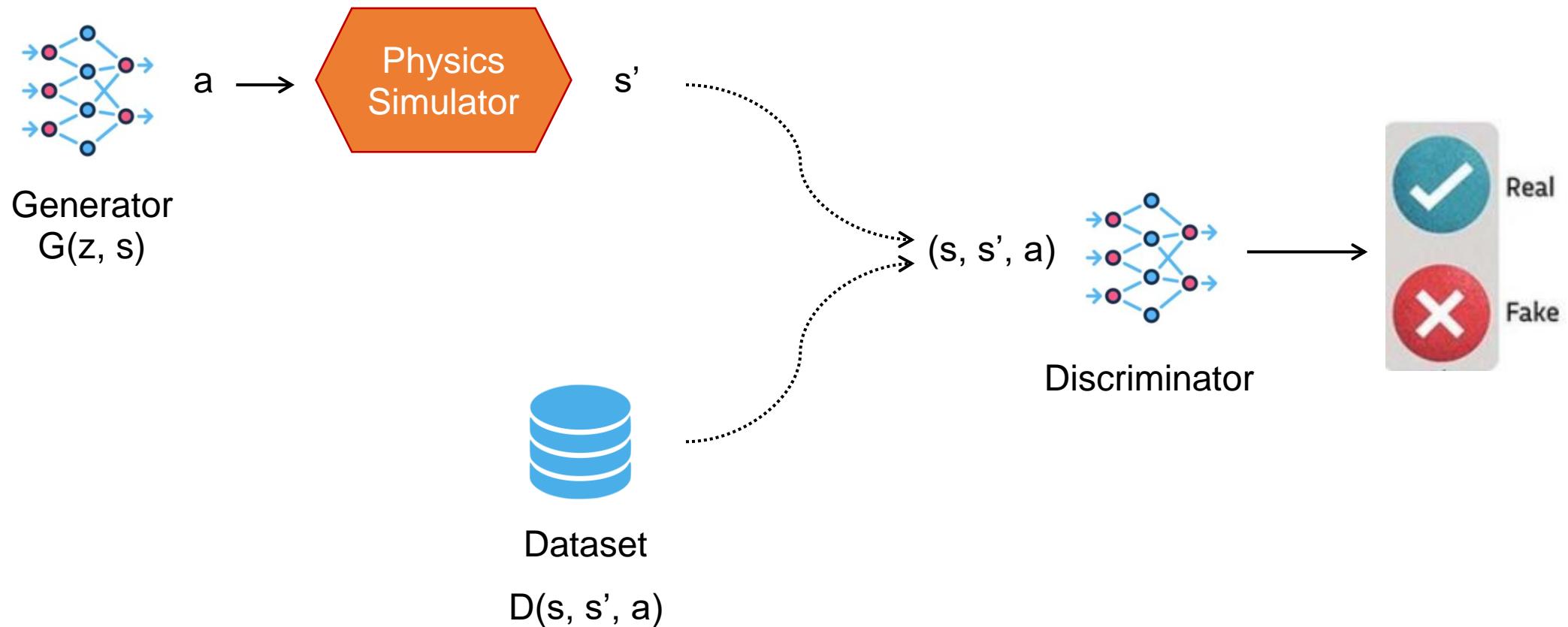
Need to predict actions



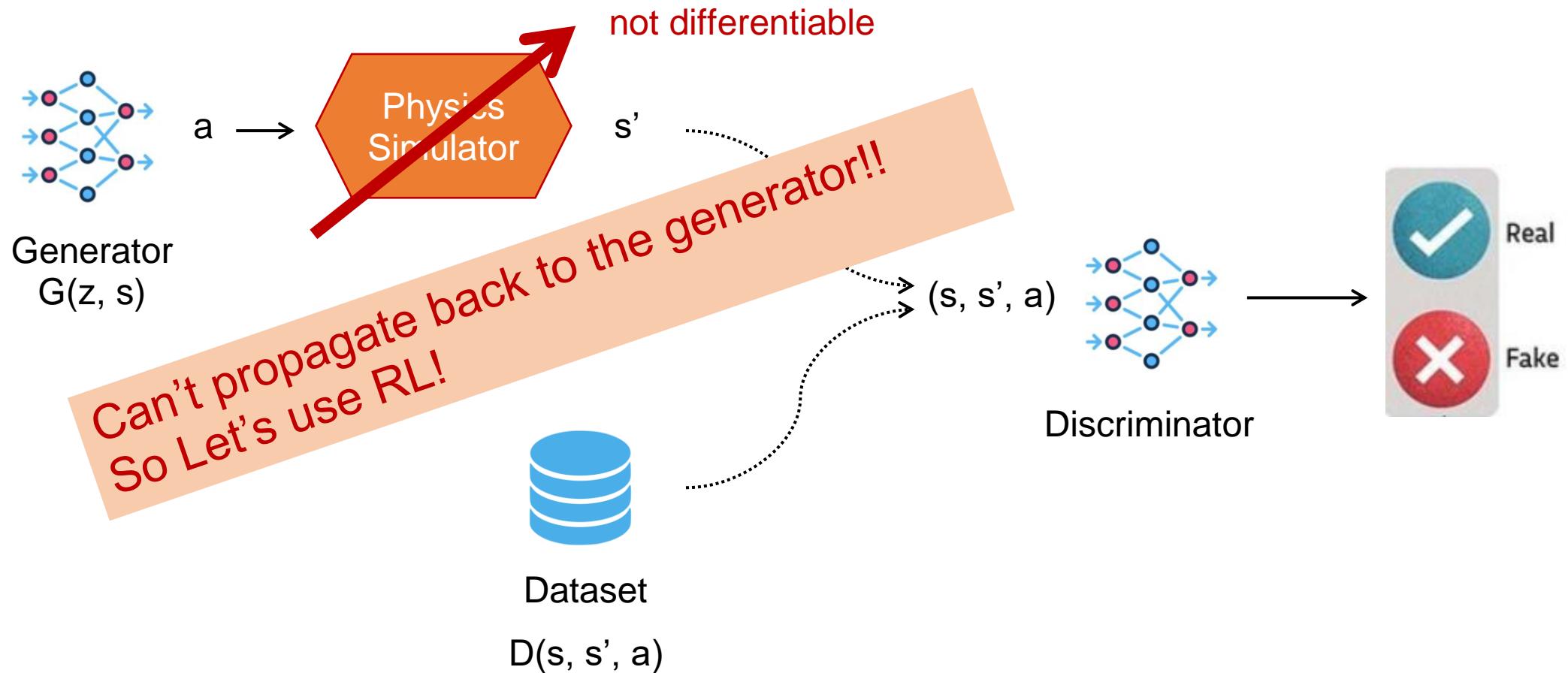
GAN (Kinematic)



GAN (Physics-based)

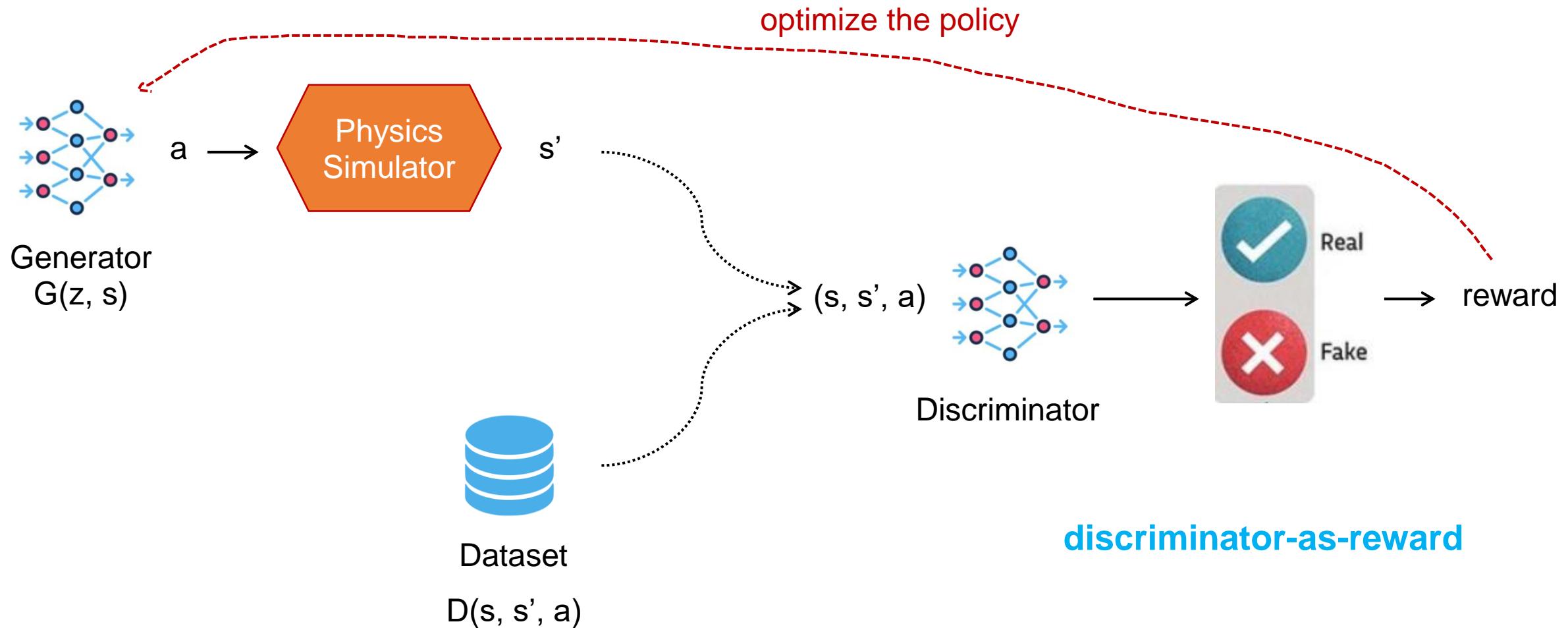


GAN (Physics-based)



Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning



Generative Adversarial Imitation Learning

$$\mathbb{E}_\pi[\log(D(s, a))] + \mathbb{E}_{\pi_E}[\log(1 - D(s, a))] - \lambda H(\pi)$$

policy
expert policy

Algorithm 1 Generative adversarial imitation learning

```

1: Input: Expert trajectories  $\tau_E \sim \pi_E$ , initial policy and discriminator parameters  $\theta_0, w_0$ 
2: for  $i = 0, 1, 2, \dots$  do
3:   Sample trajectories  $\tau_i \sim \pi_{\theta_i}$ 
4:   Update the discriminator parameters from  $w_i$  to  $w_{i+1}$  with the gradient

```

$$\hat{\mathbb{E}}_{\tau_i}[\nabla_w \log(D_w(s, a))] + \hat{\mathbb{E}}_{\tau_E}[\nabla_w \log(1 - D_w(s, a))] \quad (17)$$

5: Take a policy step from θ_i to θ_{i+1} , using the TRPO rule with cost function $\log(D_{w_{i+1}}(s, a))$. Specifically, take a KL-constrained natural gradient step with

$$\hat{\mathbb{E}}_{\tau_i} [\nabla_\theta \log \pi_\theta(a|s) Q(s, a)] - \lambda \nabla_\theta H(\pi_\theta), \quad (18)$$

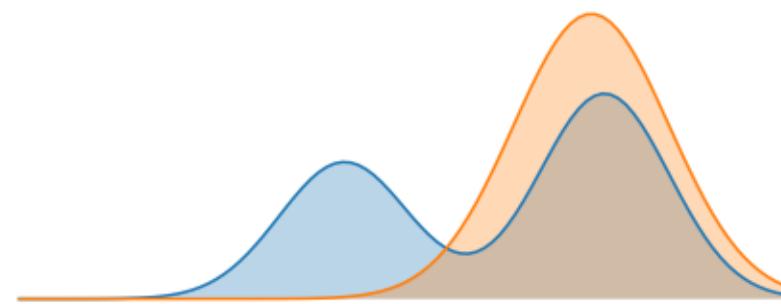
where $Q(\bar{s}, \bar{a}) = \hat{\mathbb{E}}_{\tau_i} [\log(D_{w_{i+1}}(s, a)) \mid s_0 = \bar{s}, a_0 = \bar{a}]$

6: end for

Generative Adversarial Imitation Learning

$$r_t = -\log(1 - D((s_t, a_t))) \quad \text{or} \quad r_t = \log(D((s_t, a_t))) \quad \text{discriminator-as-reward}$$

minimizes Jensen-Shannon divergence between $d^M(s, a)$ and $d^\pi(s, a)$



But for motion, we have no action in the demonstration!!

But for motion, we have no action in the demonstration!!

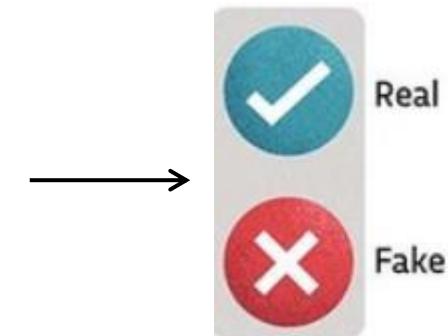
$$\arg \min_D -\mathbb{E}_{d^M(s,a)} [\log (D(s,a))] - \mathbb{E}_{d^\pi(s,a)} [\log (1 - D(s,a))].$$

$$\arg \min_D -\mathbb{E}_{d^M(s,s')} [\log (D(s,s'))] - \mathbb{E}_{d^\pi(s,s')} [\log (1 - D(s,s'))].$$

(s, a)

(s, s')

Discriminator



Adversarial Motion Priors

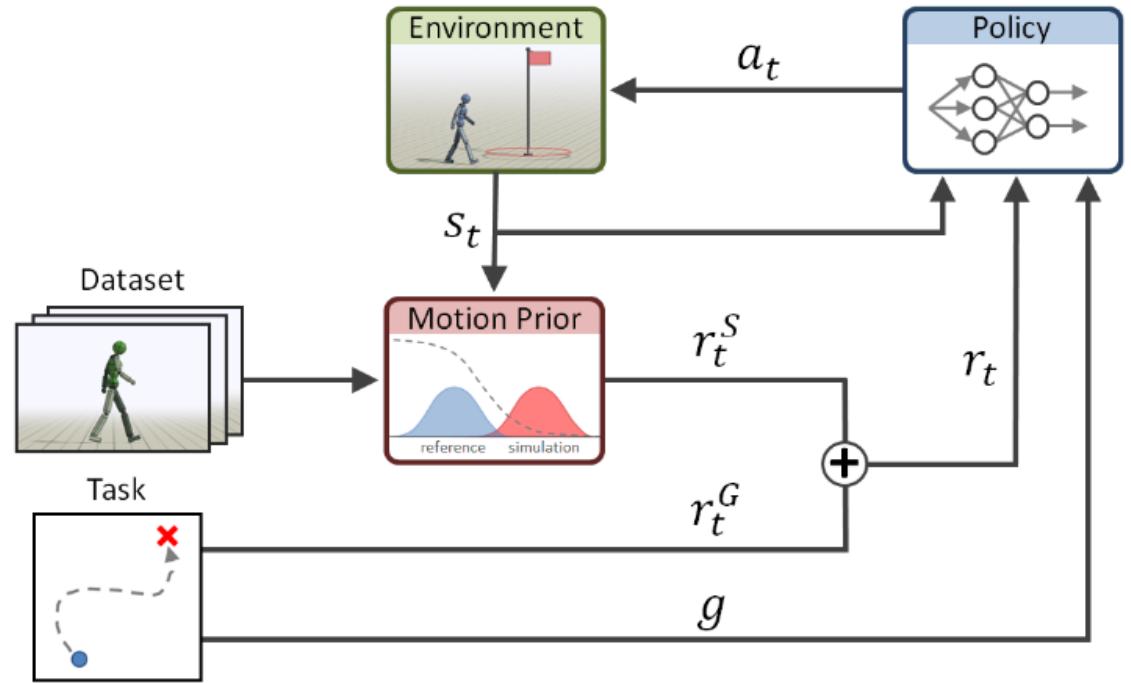
$$\arg \min_D \mathbb{E}_{d^M(s, s')} [(D(s, s') - 1)^2] + \mathbb{E}_{d^\pi(s, s')} [(D(s, s') + 1)^2]$$

$$r(s_t, s_{t+1}) = \max [0, 1 - 0.25(D(s_t, s_{t+1}) - 1)^2].$$

Style reward

$$r(s_t, a_t, s_{t+1}, g) = w^G r^G(s_t, a_t, s_t, g) + w^S r^S(s_t, s_{t+1}).$$

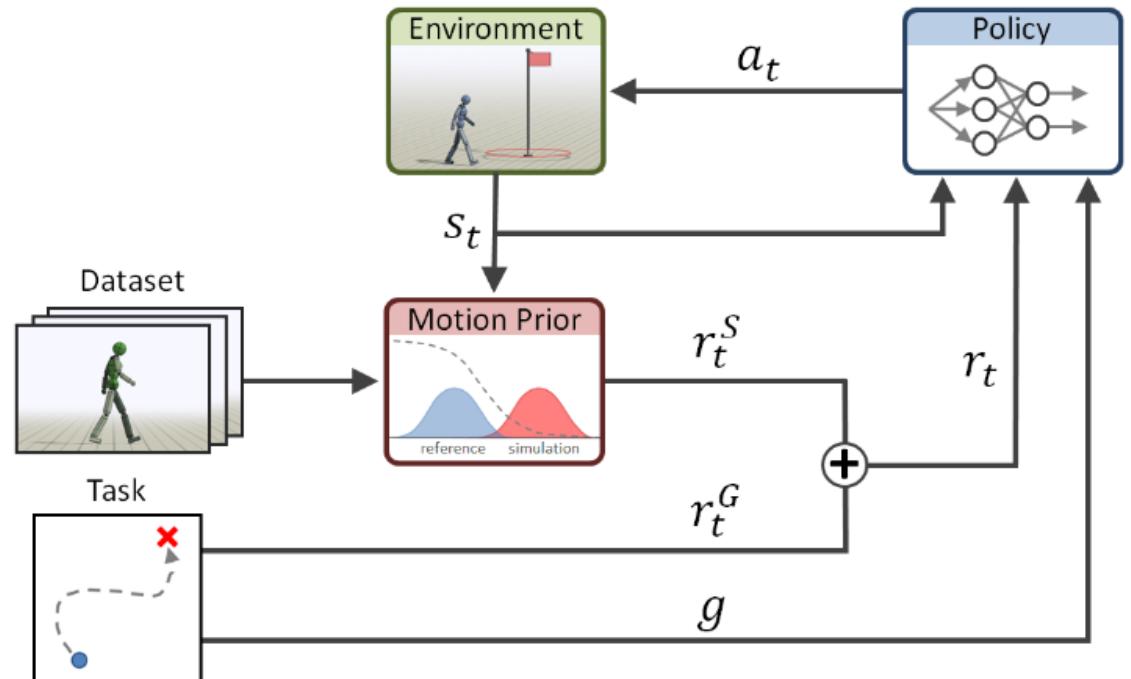
Goal (Task) reward



Adversarial Motion Priors

gradient penalty

$$\begin{aligned} \arg \min_D \quad & \mathbb{E}_{d^M(s, s')} \left[(D(\Phi(s), \Phi(s')) - 1)^2 \right] \\ & + \mathbb{E}_{d^\pi(s, s')} \left[(D(\Phi(s), \Phi(s')) + 1)^2 \right] \\ & + \frac{w_{GP}}{2} \mathbb{E}_{d^M(s, s')} \left[\left\| \nabla_\phi D(\phi) \Big|_{\phi=(\Phi(s), \Phi(s'))} \right\|^2 \right], \end{aligned}$$



Adversarial Motion Priors

ALGORITHM 1: Training with AMP

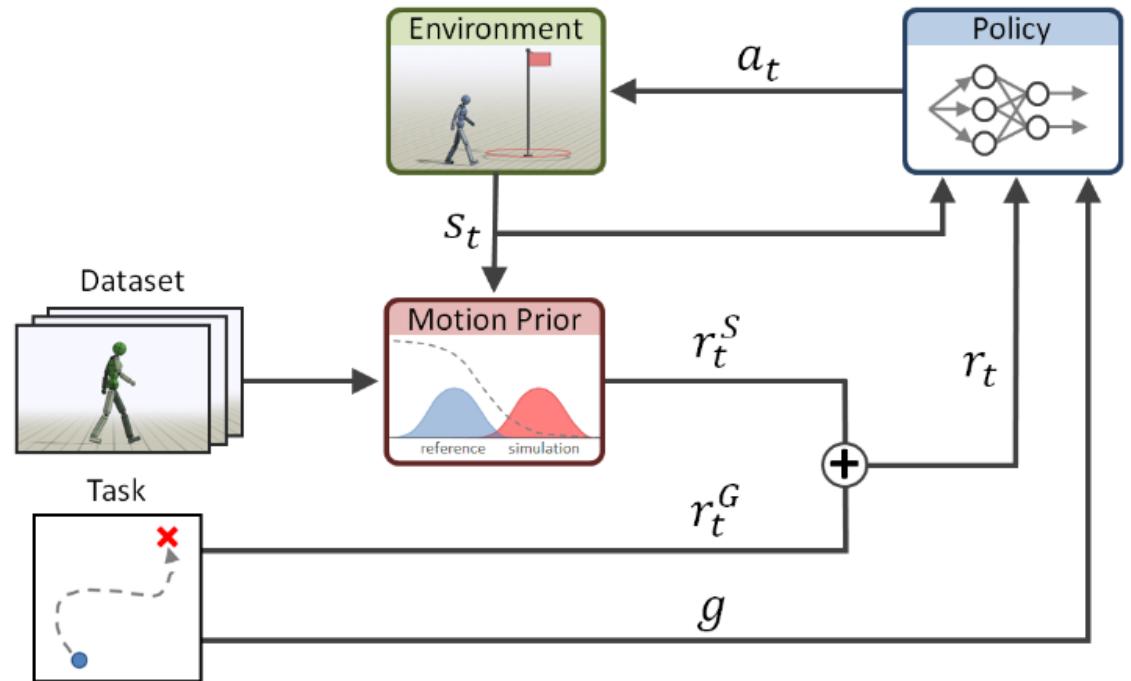
```

while not done do
  for trajectory  $i = 1, \dots, m$  do
     $\tau^i \leftarrow \{(s_t, a_t, r_t^G)_{t=0}^{T-1}, s_T^G, g\}$  collect trajectory with  $\pi$ 
    for time step  $t = 0, \dots, T - 1$  do
       $d_t \leftarrow D(\Phi(s_t), \Phi(s_{t+1}))$ 
       $r_t^S \leftarrow$  calculate style reward according to Equation 7 using  $d_t$ 
       $r_t \leftarrow w^G r_t^G + w^S r_t^S$ 
      record  $r_t$  in  $\tau^i$ 
    end for
    store  $\tau^i$  in  $\mathcal{B}$ 
  end for

  for update step  $= 1, \dots, n$  do
     $b^M \leftarrow$  sample batch of  $K$  transitions  $\{(s_j, s'_j)\}_{j=1}^K$  from  $\mathcal{M}$ 
     $b^\pi \leftarrow$  sample batch of  $K$  transitions  $\{(s_j, s'_j)\}_{j=1}^K$  from  $\mathcal{B}$ 
    update  $D$  according to Equation 8 using  $b^M$  and  $b^\pi$ 
  end for

  update  $V$  and  $\pi$  using data from trajectories  $\{\tau^i\}_{i=1}^m$ 
end while

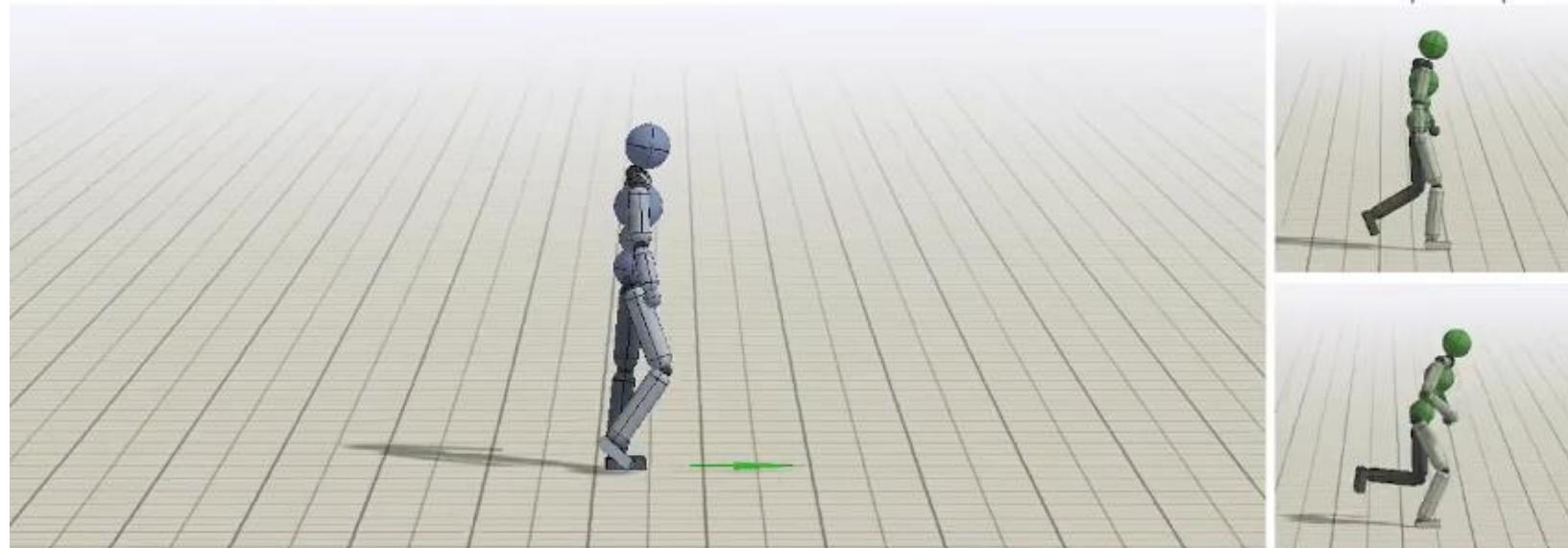
```



Adversarial Motion Priors

Humanoid: Target Heading (Locomotion)

Example Clips



By combining the motion prior
with additional task objectives,

Adversarial Motion Priors

Advantages:

- Can generate novel motions
- Can learn from low amount of data
- Flexible
- Learning is easier

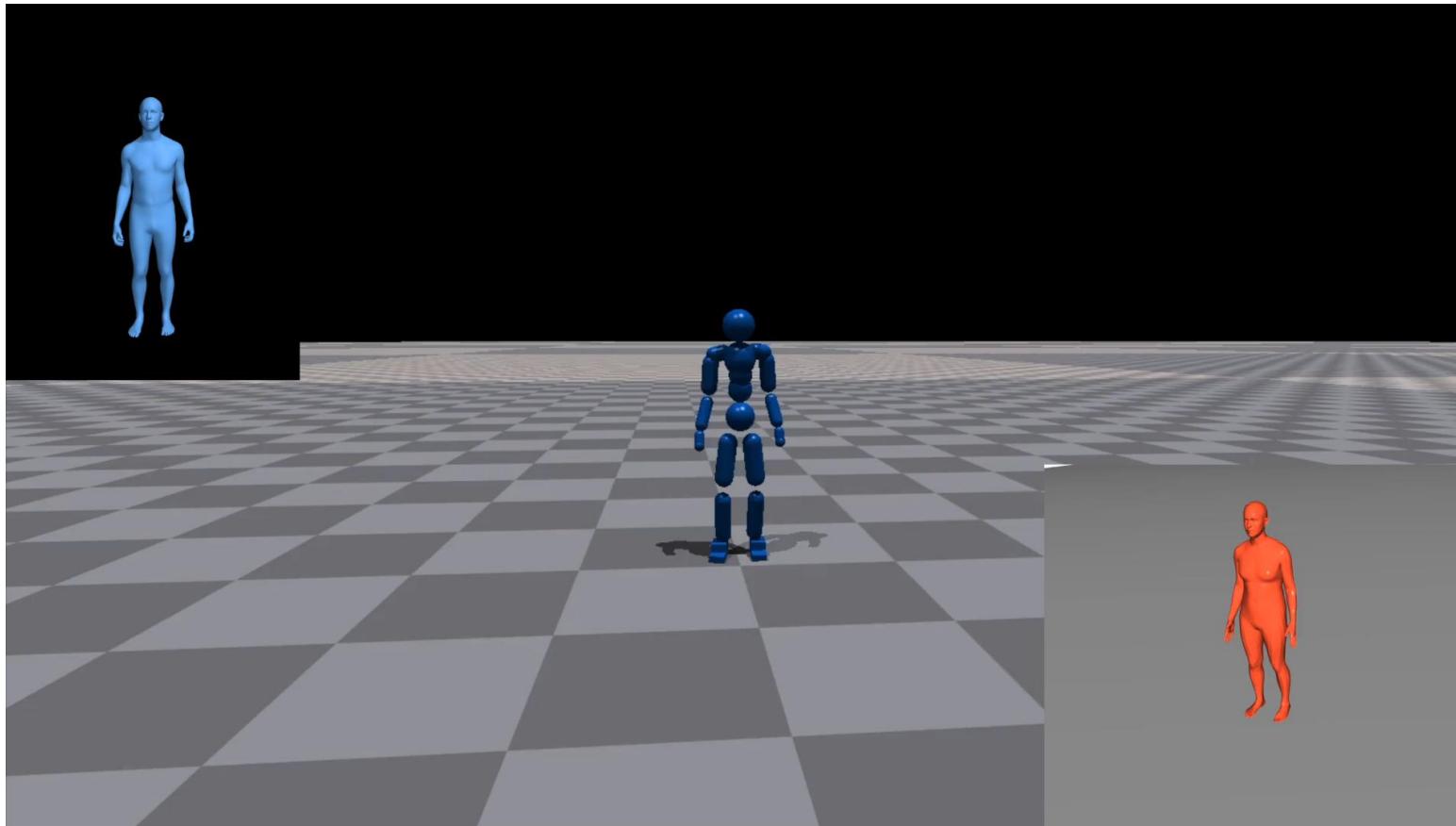
$$\|s_t^{\mathcal{M}} - s_t^{\pi}\|$$

Motion Tracking

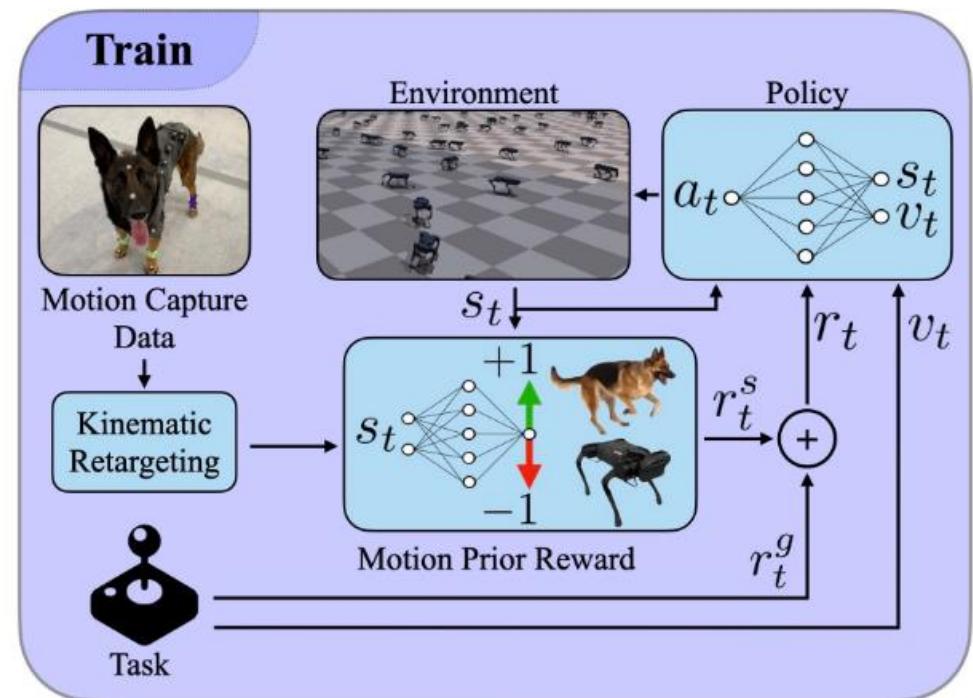
$$D_{JS}\{p(s, s')^{\mathcal{M}}, p(s, s')^{\pi}\}$$

AMP

AMP follow-ups



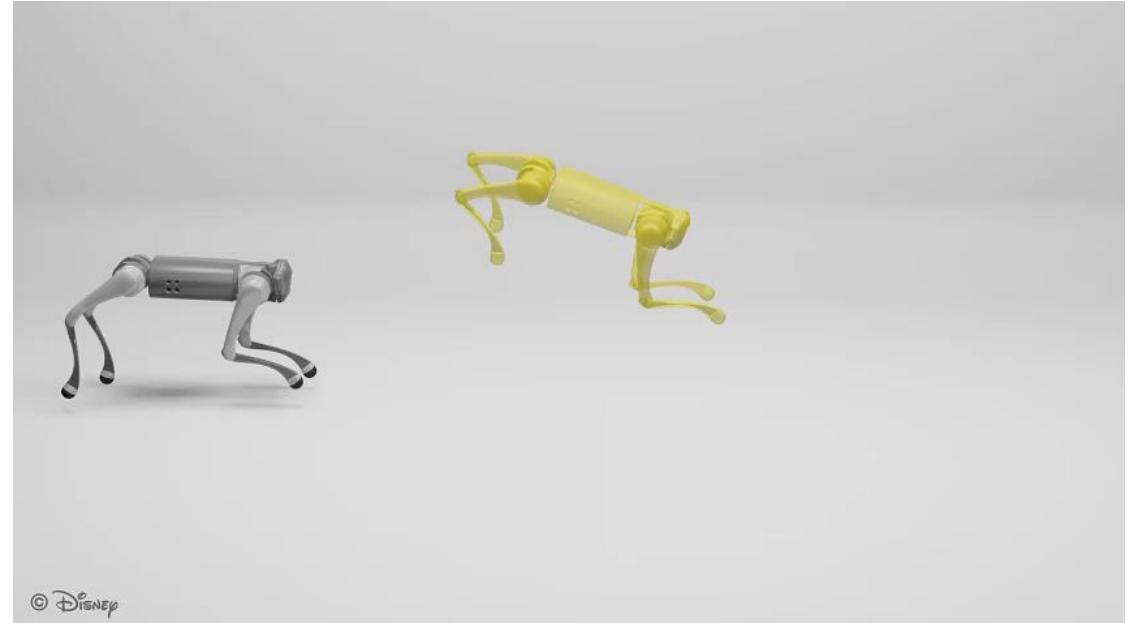
AMP for robots



AMP for robots

Multiple skills

More control

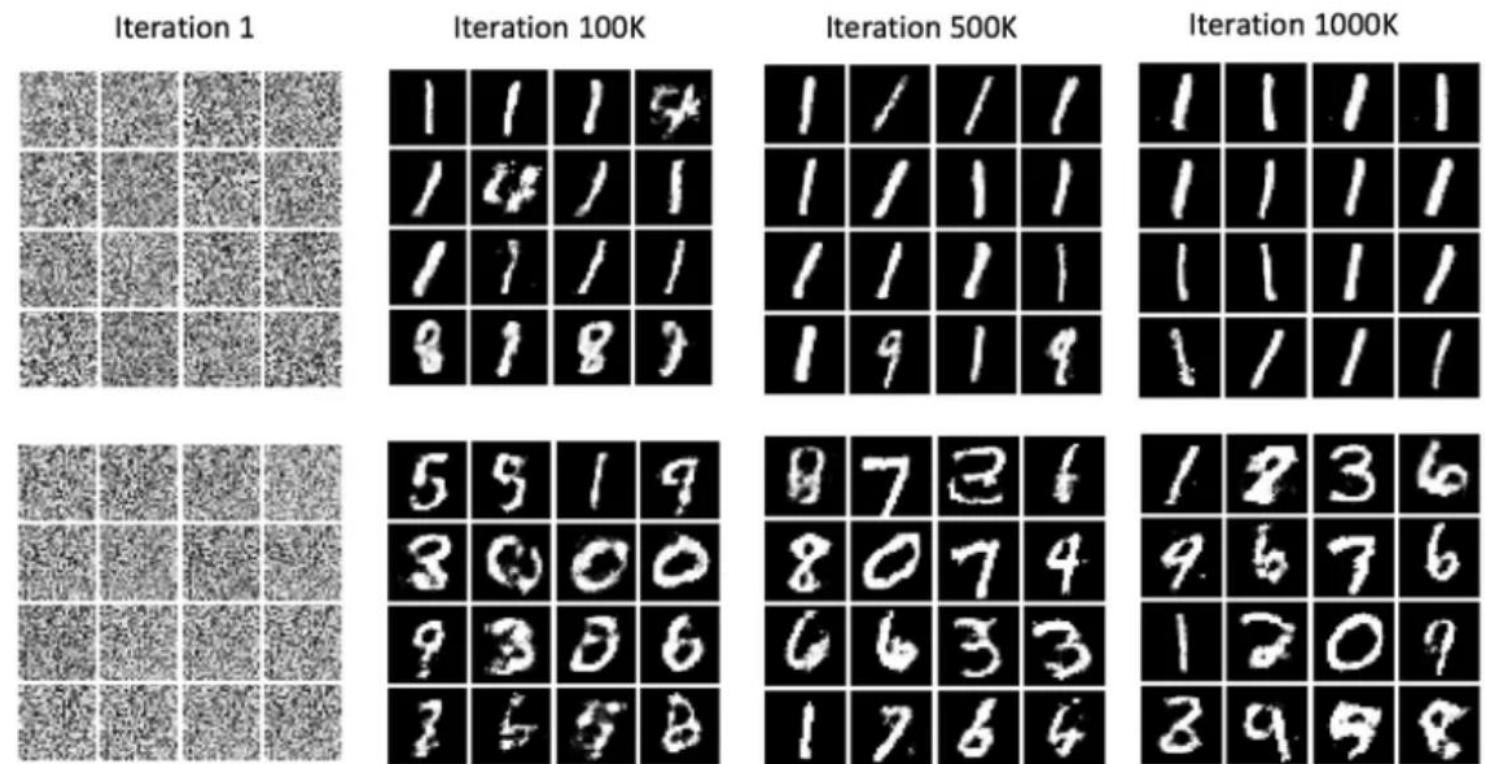


Vollenweider, Eric, et al. "Advanced skills through multiple adversarial motion priors in reinforcement learning." *2023 IEEE International Conference on Robotics and Automation (ICRA)*. IEEE, 2023.

Zargarbashi, Fatemeh, et al. "RobotKeyframing: Learning Locomotion with High-Level Objectives via Mixture of Dense and Sparse Rewards" in Proceedings of The 8th Conference on Robot Learning (CoRL 2024) 270 (PMLR, 2025), 916.

Problem with GAN and GAIL

Mode collapse

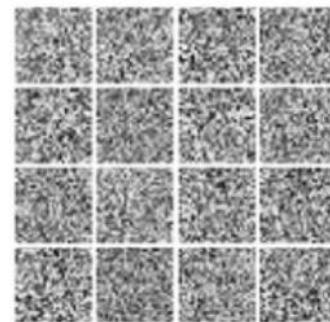


Problem with GAN and GAIL

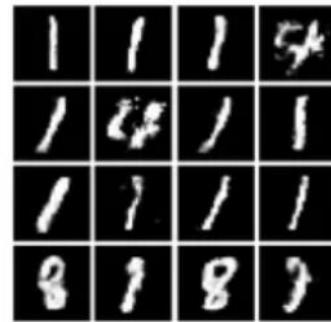
Mode collapse

As long as generator's output is similar to part of the data, the discriminator gives good score!

Iteration 1

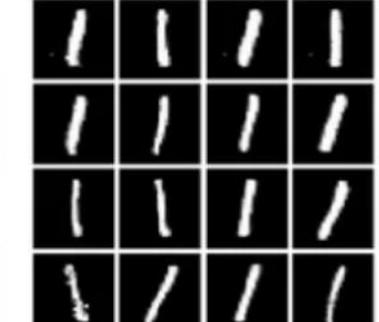
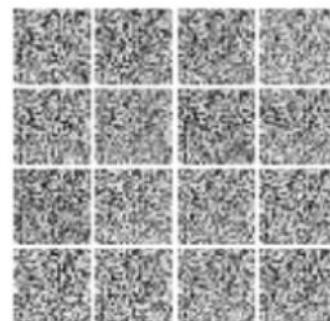


Iteration 100K



Iteration 500K

Iteration 1000K



How to avoid mode collapse?

Introduce a random/probabilistic prior

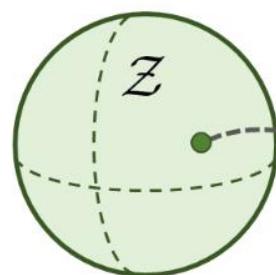
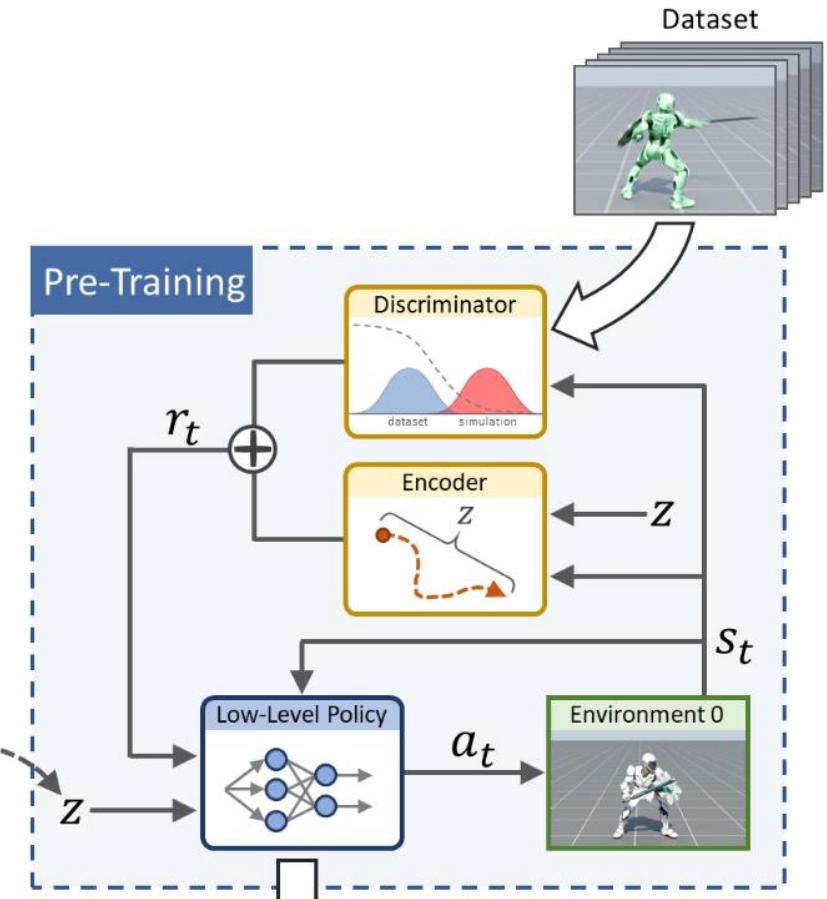
Adversarial Skill Embeddings

$$\max_{\pi} \underbrace{-D_{\text{JS}} \left(d^{\pi}(\mathbf{s}, \mathbf{s}') \middle\| d^{\mathcal{M}}(\mathbf{s}, \mathbf{s}') \right)}_{\text{motion imitation}} + \underbrace{\beta I(\mathbf{s}, \mathbf{s}'; \mathbf{z} | \pi)}_{\text{skill discovery}}.$$

mutual information

$$I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

$$I(\mathbf{s}, \mathbf{s}'; \mathbf{z} | \pi) = \mathcal{H}(\mathbf{s}, \mathbf{s}' | \pi) - \mathcal{H}(\mathbf{s}, \mathbf{s}' | \mathbf{z}, \pi).$$



Adversarial Skill Embeddings

$$I(\mathbf{s}, \mathbf{s}'; \mathbf{z} | \pi) = \mathcal{H}(\mathbf{s}, \mathbf{s}' | \pi) - \mathcal{H}(\mathbf{s}, \mathbf{s}' | \mathbf{z}, \pi).$$

but this is intractable to compute

$$\begin{aligned} I(\mathbf{s}, \mathbf{s}'; \mathbf{z} | \pi) &= I(\mathbf{z}; \mathbf{s}, \mathbf{s}' | \pi) \\ &= \mathcal{H}(\mathbf{z}) - \mathcal{H}(\mathbf{z} | \mathbf{s}, \mathbf{s}', \pi). \end{aligned} \quad \begin{array}{ll} \text{variational approximation} & q(\mathbf{z} | \mathbf{s}, \mathbf{s}') \\ \text{constant} & \text{encoder} \end{array}$$

$$\arg \max_{\pi} \mathbb{E}_{p(\mathbf{z})} \mathbb{E}_{p(\tau | \pi, \mathbf{z})} \left[\sum_{t=0}^{T-1} \gamma^t \left(-\log (1 - D(\mathbf{s}_t, \mathbf{s}_{t+1})) + \beta \log q(\mathbf{z} | \mathbf{s}_t, \mathbf{s}_{t+1}) \right) \right].$$

$$r_t = -\log (1 - D(\mathbf{s}_t, \mathbf{s}_{t+1})) + \beta \log q(\mathbf{z}_t | \mathbf{s}_t, \mathbf{s}_{t+1}).$$

Adversarial Skill Embeddings

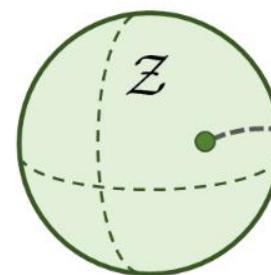
What prior distribution?

$$p(z) = \mathcal{N}(0, I)$$

Gaussian distribution is unbounded \longrightarrow unrealistic motions

a uniform distribution on the surface of the sphere

$$\bar{z} \sim \mathcal{N}(0, I), \quad z = \bar{z} / \|\bar{z}\|.$$

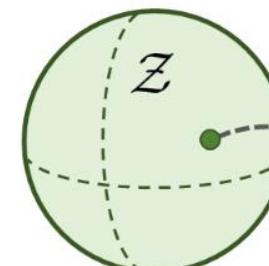
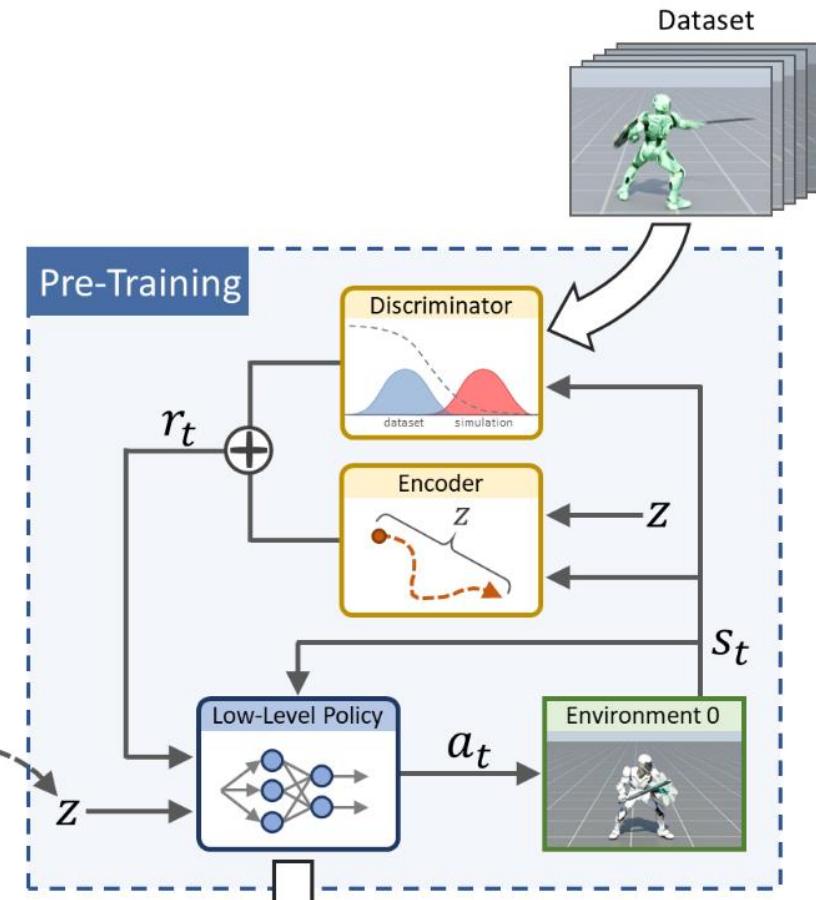


Adversarial Skill Embeddings

skill encoder $q(z|s, s') = \frac{1}{Z} \exp \left(\kappa \mu_q(s, s')^T z \right)$

$$\max_q \quad \mathbb{E}_{p(z)} \mathbb{E}_{d^\pi(s, s' | z)} \left[\kappa \mu_q(s, s')^T z \right]$$

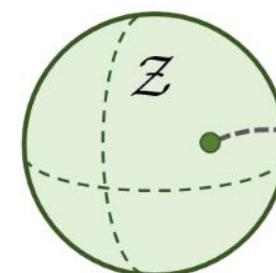
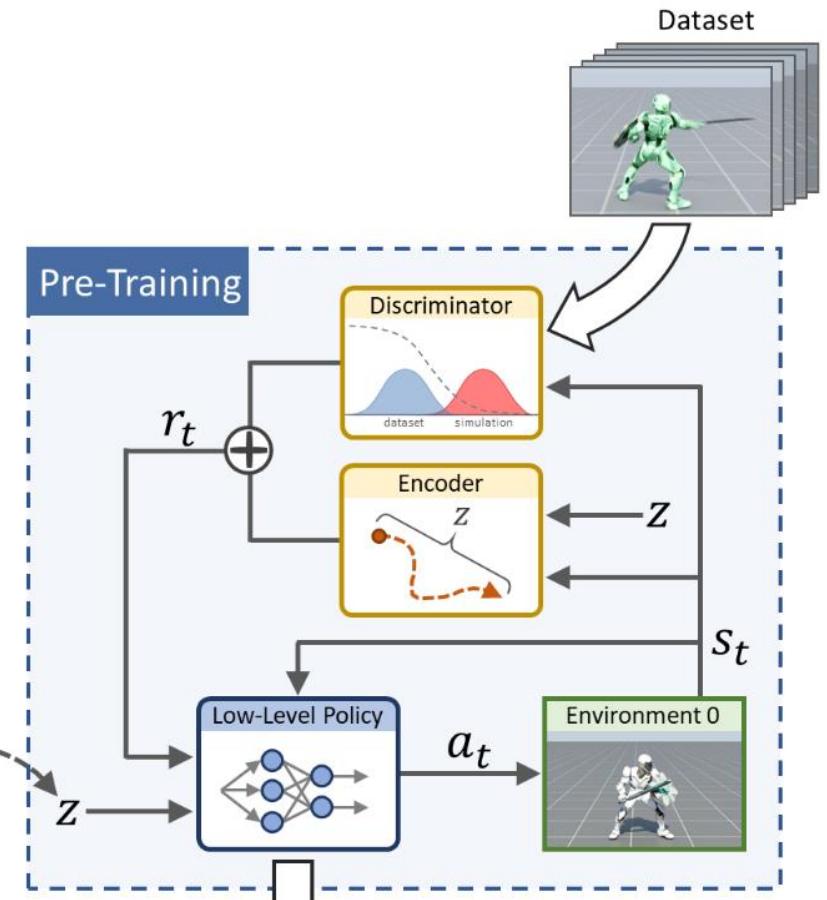
the encoder can then be trained by maximizing the log-likelihood of samples (z, s, s') collected from the policy



Adversarial Skill Embeddings

diversity objective

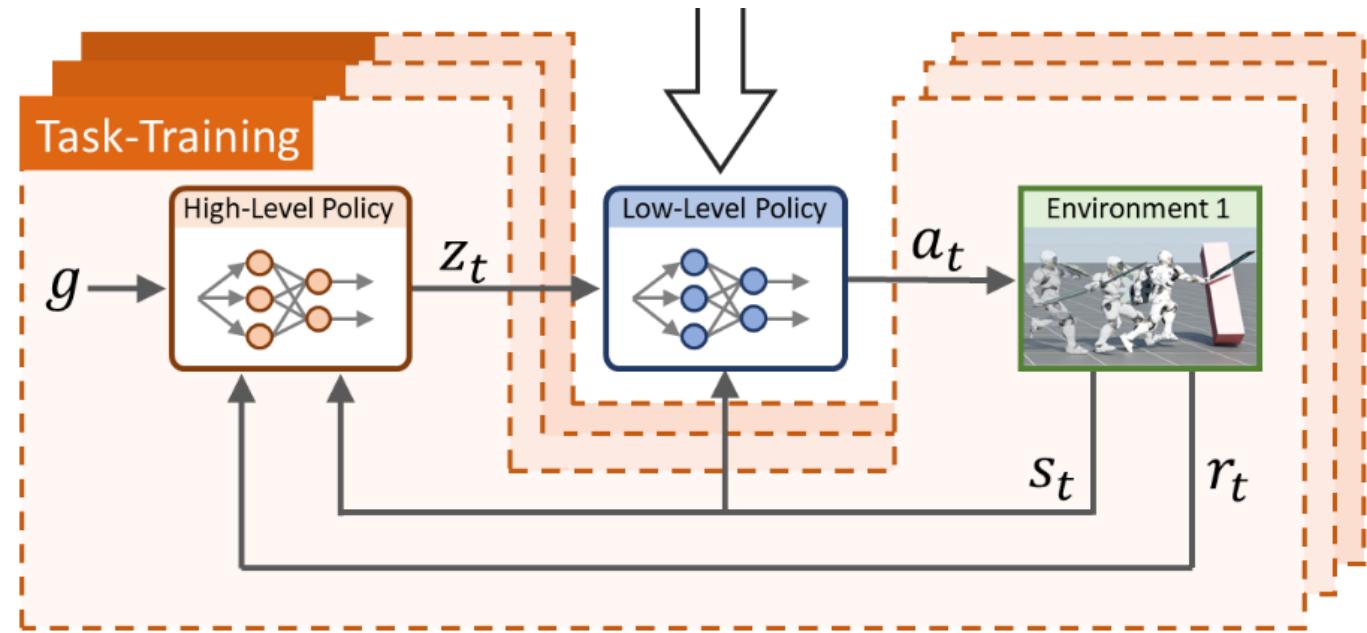
$$\arg \max_{\pi} \mathbb{E}_{p(Z)} \mathbb{E}_{p(\tau | \pi, Z)} \left[\sum_{t=0}^{T-1} \gamma^t \left(-\log (1 - D(s_t, s_{t+1})) \right. \right. \\ \left. \left. + \beta \log q(z_t | s_t, s_{t+1}) \right) \right] \\ - w_{\text{div}} \mathbb{E}_{d^{\pi}(s)} \mathbb{E}_{z_1, z_2 \sim p(z)} \left[\left(\frac{D_{\text{KL}}(\pi(\cdot | s, z_1), \pi(\cdot | s, z_2))}{D_z(z_1, z_2)} - 1 \right)^2 \right]$$



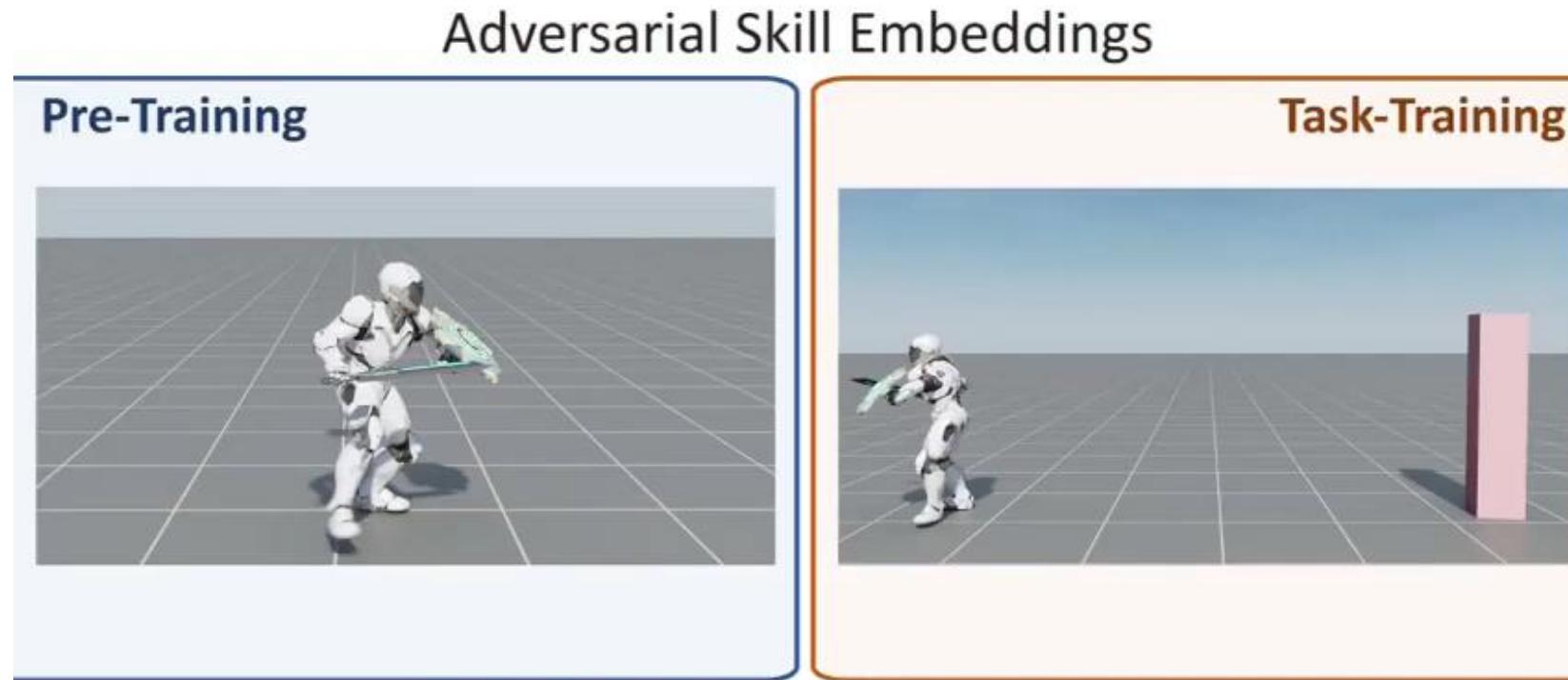
Adversarial Skill Embeddings

$$r_t = w_G r^G(s_t, a_t, s_{t+1}, g) - w_S \log (1 - D(s_t, s_{t+1}))$$

Hierarchical method



Adversarial Skill Embeddings

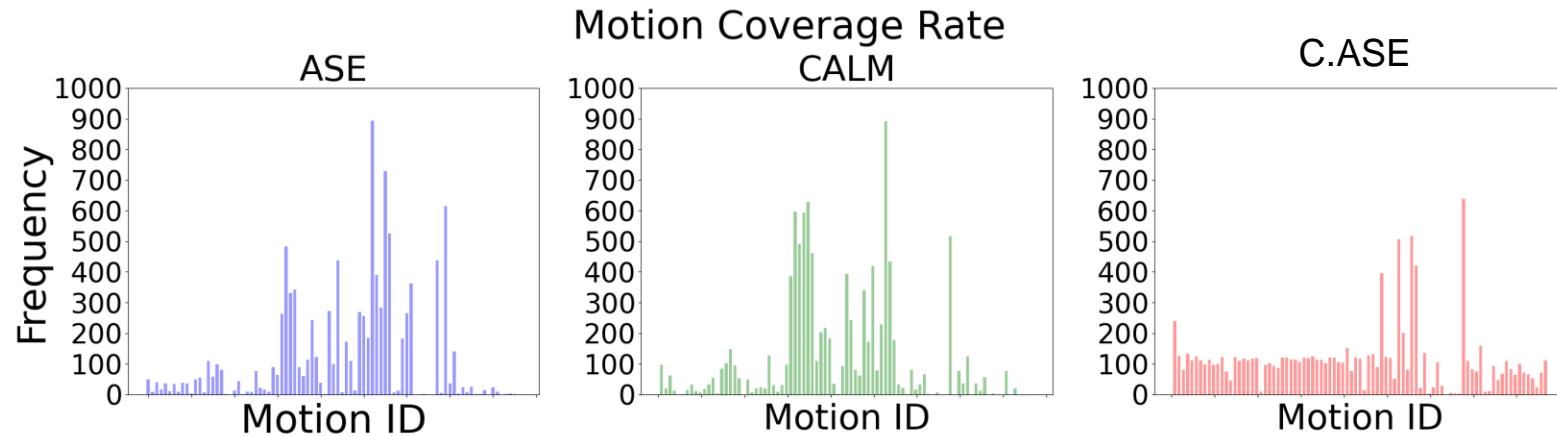


Our framework consists of two stages:
a pre-training stage, and a task-training stage.

ASE follow-ups

CALM / C.ASE

Conditioning – Tackling mode collapse



Tessler, Chen, et al. "Calm: Conditional adversarial latent models for directable virtual characters." *ACM SIGGRAPH 2023 Conference Proceedings*. 2023.

Dou, Zhiyang, et al. "C· ase: Learning conditional adversarial skill embeddings for physics-based characters." *SIGGRAPH Asia 2023 Conference Papers*. 2023.

Outline

- Recap
- Adversarial methods
- **Diffusion-based methods**
- Challenges in character animation

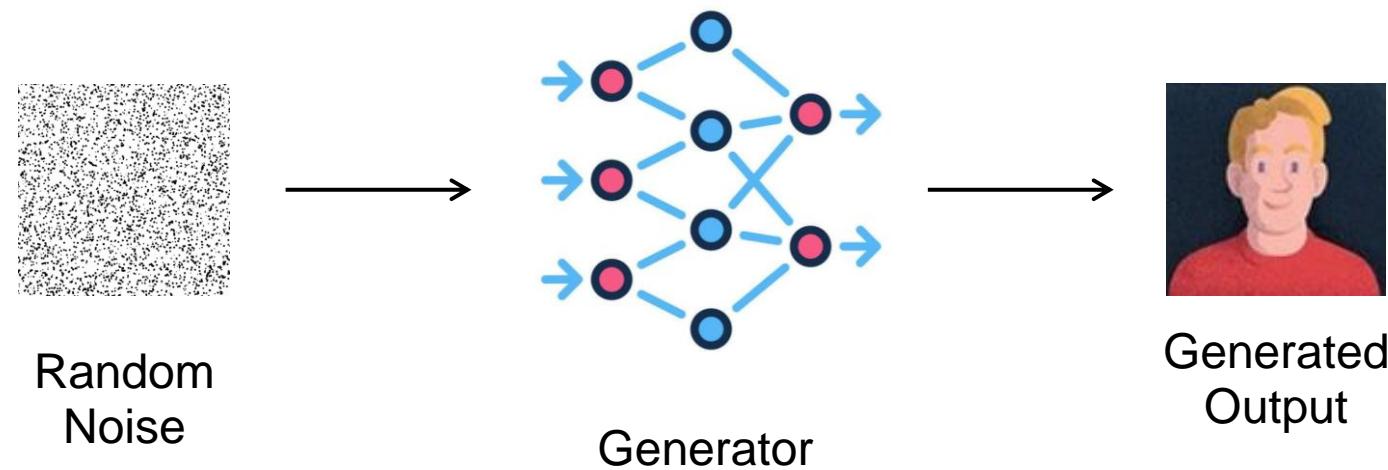
GAN

Diffusion

Diffusion

Various images generated by DALL-E 2

Diffusion



Diffusion

Add noise, learn to denoise

Forward process (data \rightarrow noise)

Reverse process (noise \rightarrow data)

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." *Advances in neural information processing systems* 33 (2020): 6840-6851.

Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." *arXiv preprint arXiv:2011.13456* (2020).

Diffusion

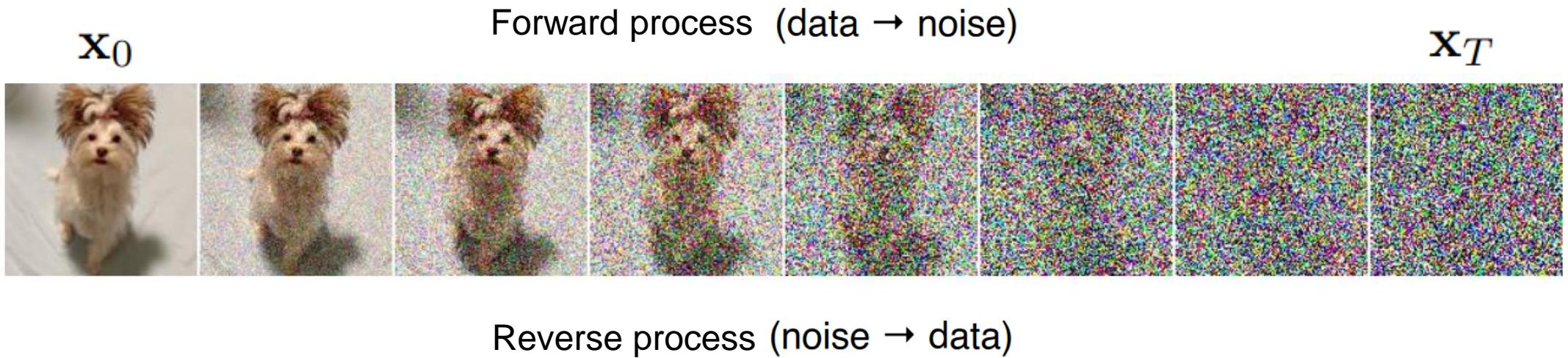
In diffusion, the forward process is modeled by a **Markov chain**: probability of each event only depends on the previous event

The transitions are **Gaussian**

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

$$q(\mathbf{x}_{1:T} | \mathbf{x}_0) := \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1}) := \prod_{t=1}^T \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$



Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." *Advances in neural information processing systems* 33 (2020): 6840-6851.

Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." *arXiv preprint arXiv:2011.13456* (2020).

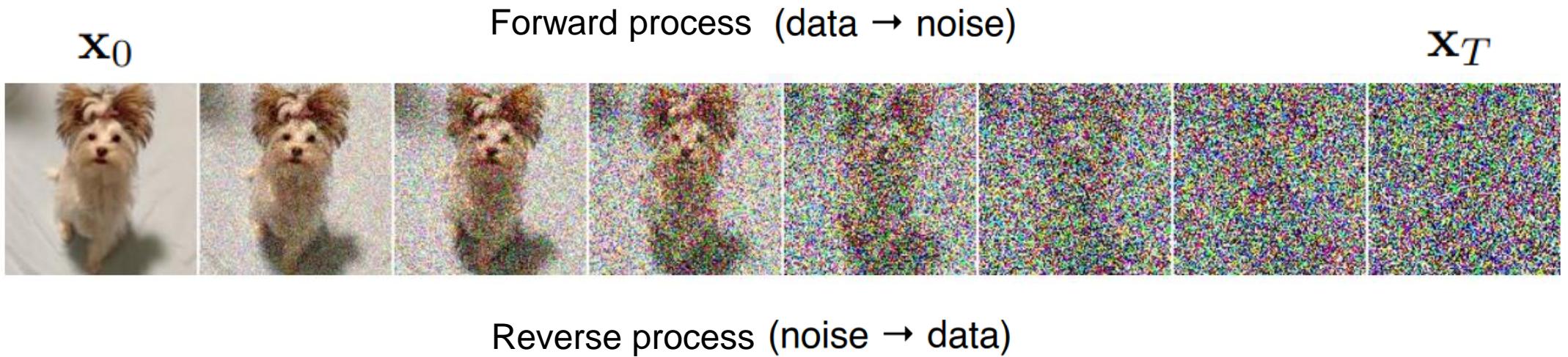
Diffusion

Learn the reverse process

$$p_{\theta}(\mathbf{x}_{0:T}) := p(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t),$$

$$p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) := \mathcal{N}(\mathbf{x}_{t-1}; \underline{\boldsymbol{\mu}_{\theta}}(\mathbf{x}_t, \underline{t}), \underline{\boldsymbol{\Sigma}_{\theta}}(\mathbf{x}_t, \underline{t}))$$

dependent on step
parameterized by NN



Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." *Advances in neural information processing systems* 33 (2020): 6840-6851.

Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." *arXiv preprint arXiv:2011.13456* (2020).

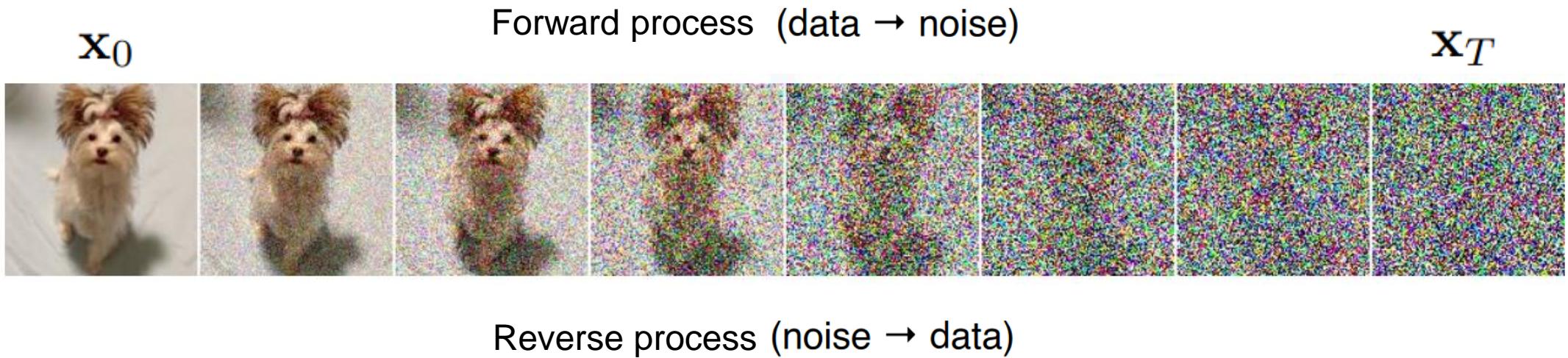
Diffusion

Learn the reverse process:

Find the reverse Markov transitions that maximize the **likelihood of the training data** $p(x_0)$

$$\mathbb{E} [-\log p_\theta(\mathbf{x}_0)] \leq \mathbb{E}_q \left[-\log \frac{p_\theta(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] = \mathbb{E}_q \left[-\log p(\mathbf{x}_T) - \sum_{t \geq 1} \log \frac{p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)}{q(\mathbf{x}_t|\mathbf{x}_{t-1})} \right] =: L$$

variational upper bound



Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." *Advances in neural information processing systems* 33 (2020): 6840-6851.

Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." *arXiv preprint arXiv:2011.13456* (2020).

Diffusion

$$p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t) := \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_\theta(\mathbf{x}_t, t), \boldsymbol{\Sigma}_\theta(\mathbf{x}_t, t)) \quad \boldsymbol{\Sigma}_\theta(\mathbf{x}_t, t) = \sigma_t^2 \mathbf{I}$$

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

reparameterization $\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\epsilon}) = \sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}$ for $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

$$\boldsymbol{\mu}_\theta(\mathbf{x}_t, t) = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t) \right)$$

Loss can be simplified to:

$$L_{\text{simple}}(\theta) := \mathbb{E}_{t, \mathbf{x}_0, \boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_\theta(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \right\|^2 \right]$$

Denoising Diffusion Probabilistic Models (DDPM)

DDPM

Algorithm 1 Training

```
1: repeat
2:    $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 
3:    $t \sim \text{Uniform}(\{1, \dots, T\})$ 
4:    $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
5:   Take gradient descent step on
       $\nabla_{\theta} \|\epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t)\|^2$ 
6: until converged
```

Algorithm 2 Sampling

```
1:  $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
2: for  $t = T, \dots, 1$  do
3:    $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$  if  $t > 1$ , else  $\mathbf{z} = \mathbf{0}$ 
4:    $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 
5: end for
6: return  $\mathbf{x}_0$ 
```

How to control the output?

Need to introduce conditions \rightarrow maximize likelihood of conditional training data $p(x_0|y)$

$$\nabla_{x_t} \log p(x_t) \rightarrow \nabla_{x_t} \log p(x_t|y)$$

$$\nabla \log p(x_t|y) = \nabla \log \left(\frac{p(x_t)p(y|x_t)}{p(y)} \right) = \nabla \log p(x_t) + \underline{\nabla \log p(y|x_t)}$$

Train a classifier on noisy data $f_\phi(y|x_t)$

Then use the gradient $\nabla_{x_t} \log f_\phi(y|x_t)$ to guide diffusion **sampling** process: **Classifier Guidance**

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_\theta(x_t), \Sigma_\theta(x_t))$, classifier $f_\phi(y|x_t)$, and gradient scale s .

```
Input: class label  $y$ , gradient scale  $s$ 
 $x_T \leftarrow$  sample from  $\mathcal{N}(0, \mathbf{I})$ 
for all  $t$  from  $T$  to 1 do
     $\mu, \Sigma \leftarrow \mu_\theta(x_t), \Sigma_\theta(x_t)$ 
     $x_{t-1} \leftarrow$  sample from  $\mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log f_\phi(y|x_t), \Sigma)$ 
end for
return  $x_0$ 
```

Only at inference time

How to control the output?

Classifier-free guidance

Classifier doesn't need to be explicitly learned

$p_\theta(\mathbf{x})$ parameterized through $\epsilon_\theta(\mathbf{x}_t, t)$

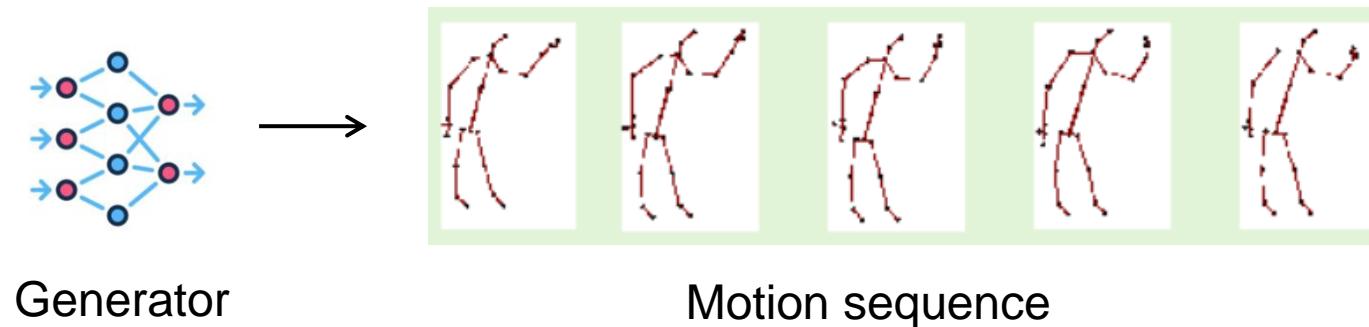
$$\begin{aligned}
\nabla_{\mathbf{x}_t} \log p(y|\mathbf{x}_t) &= \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|y) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) \\
&= -\frac{1}{\sqrt{1-\bar{\alpha}_t}} \left(\epsilon_\theta(\mathbf{x}_t, t, y) - \epsilon_\theta(\mathbf{x}_t, t) \right) \\
\bar{\epsilon}_\theta(\mathbf{x}_t, t, y) &= \epsilon_\theta(\mathbf{x}_t, t, y) - \sqrt{1-\bar{\alpha}_t} w \nabla_{\mathbf{x}_t} \log p(y|\mathbf{x}_t) \\
&= \epsilon_\theta(\mathbf{x}_t, t, y) + w(\epsilon_\theta(\mathbf{x}_t, t, y) - \epsilon_\theta(\mathbf{x}_t, t)) \\
&= (w+1)\epsilon_\theta(\mathbf{x}_t, t, y) - w\epsilon_\theta(\mathbf{x}_t, t) \quad \epsilon_\theta(\mathbf{x}_t, t) = \epsilon_\theta(\mathbf{x}_t, t, y = \emptyset).
\end{aligned}$$

Unlike classifier guidance, it requires specific training.

Human Motion Diffusion Model (MDM)

Human Motion Diffusion Model (MDM)

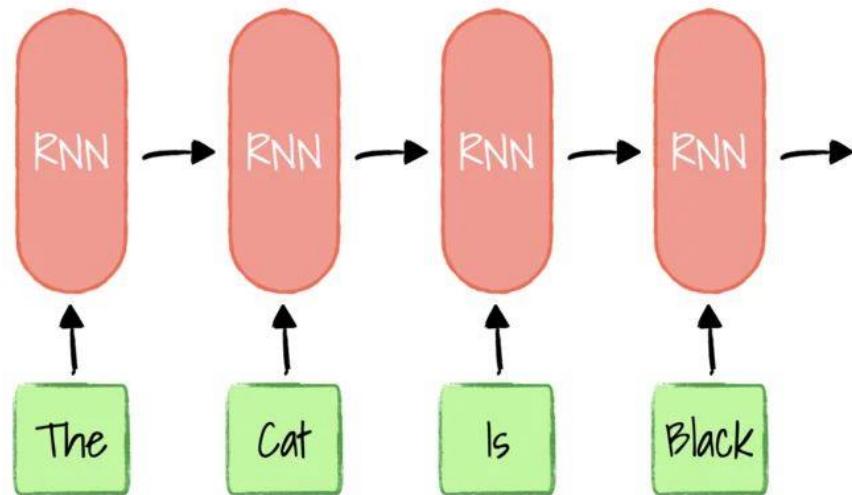
Generate sequence of motion: [Transformer](#)



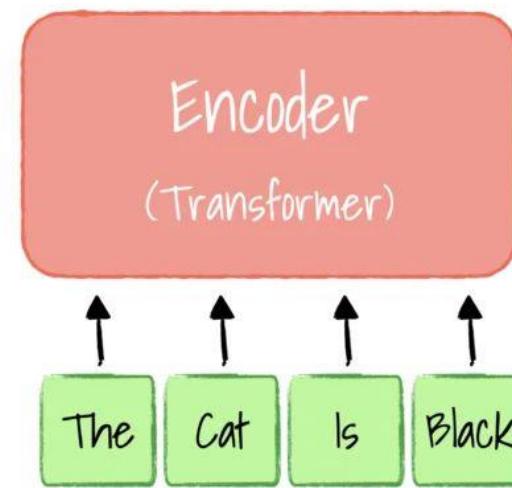
Transformers

Another way to represent sequence data

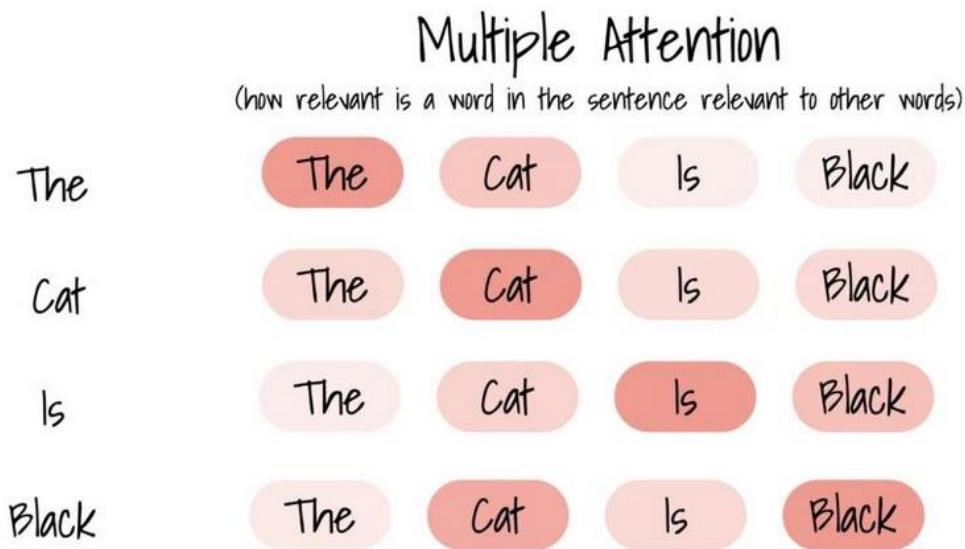
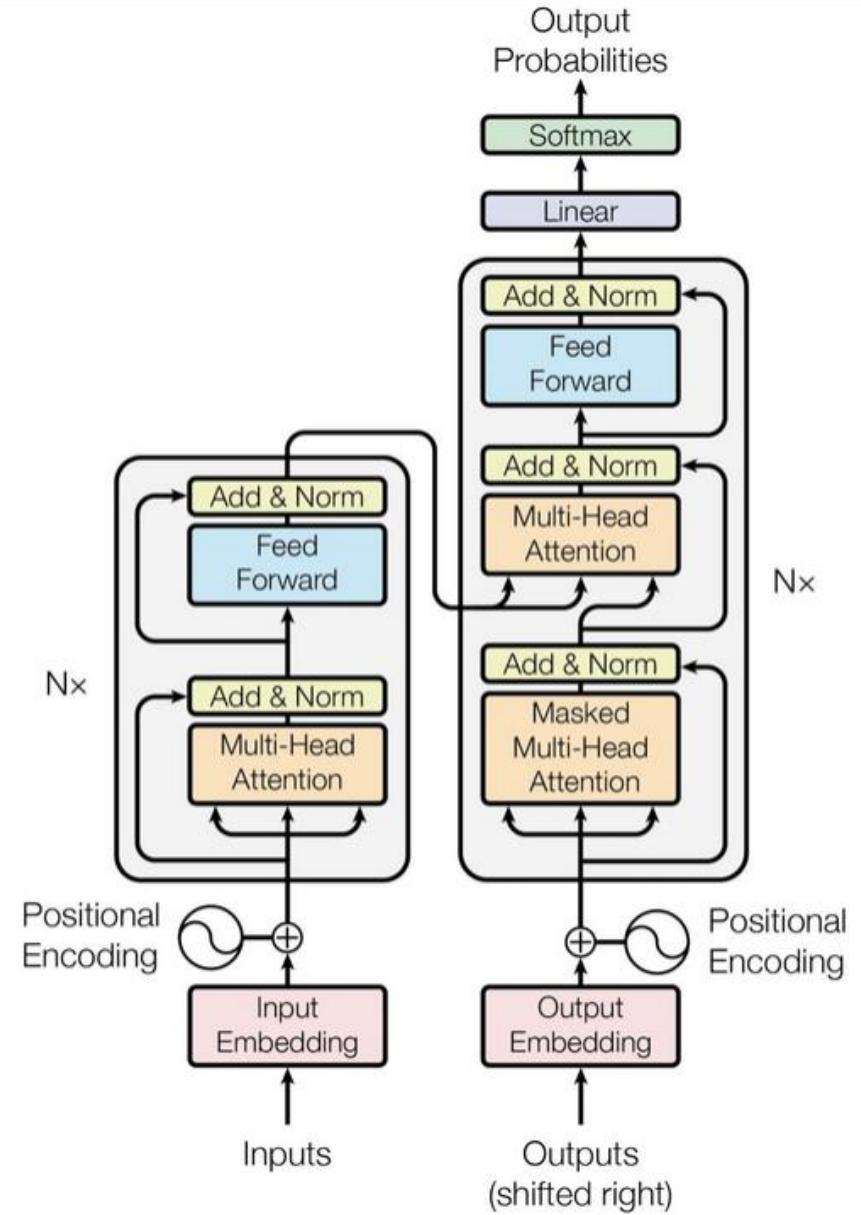
RNN based Encoder



Transformer's Encoder



Transformers



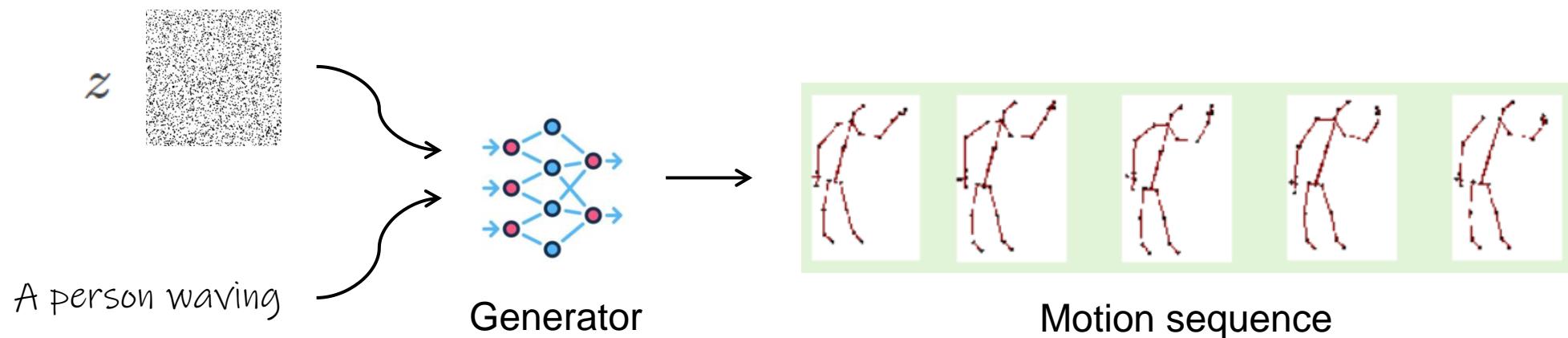
Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems* 30 (2017).

<https://jinglescode.github.io/2020/05/27/illustrated-guide-transformer/>

Human Motion Diffusion Model (MDM)

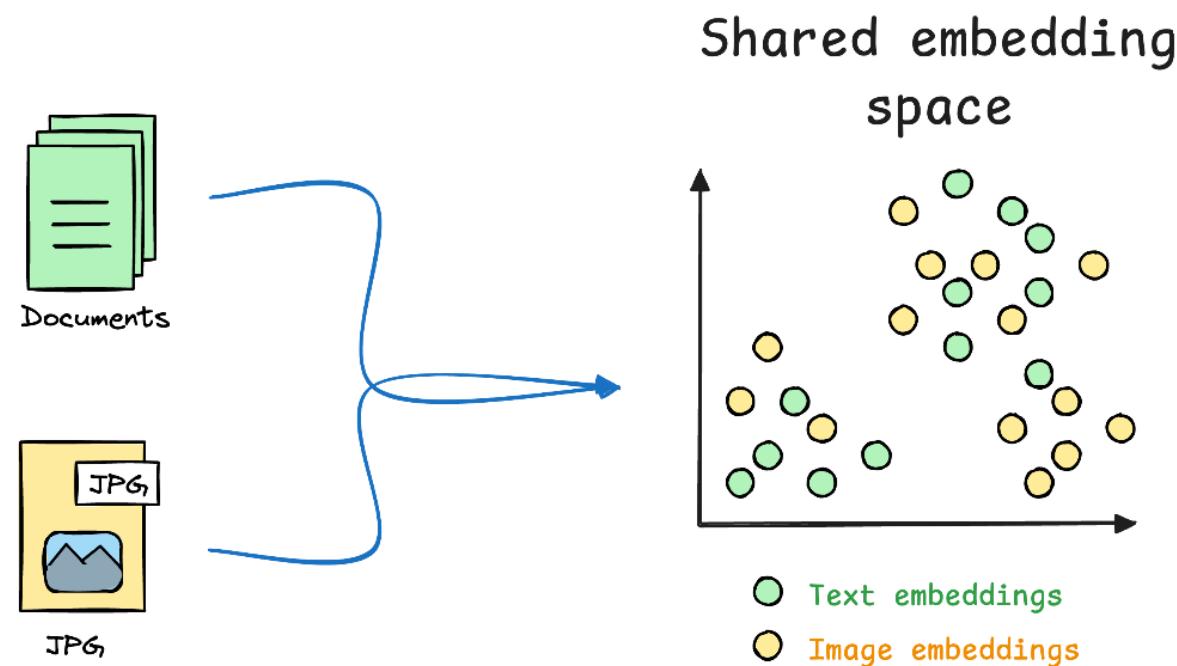
Generate sequence of motion: [Transformer](#)

Conditioned on text prompt: [CLIP embedding](#)



CLIP Embedding

A multi-modal representation that maps images and text into a shared space



Human Motion Diffusion Model (MDM)

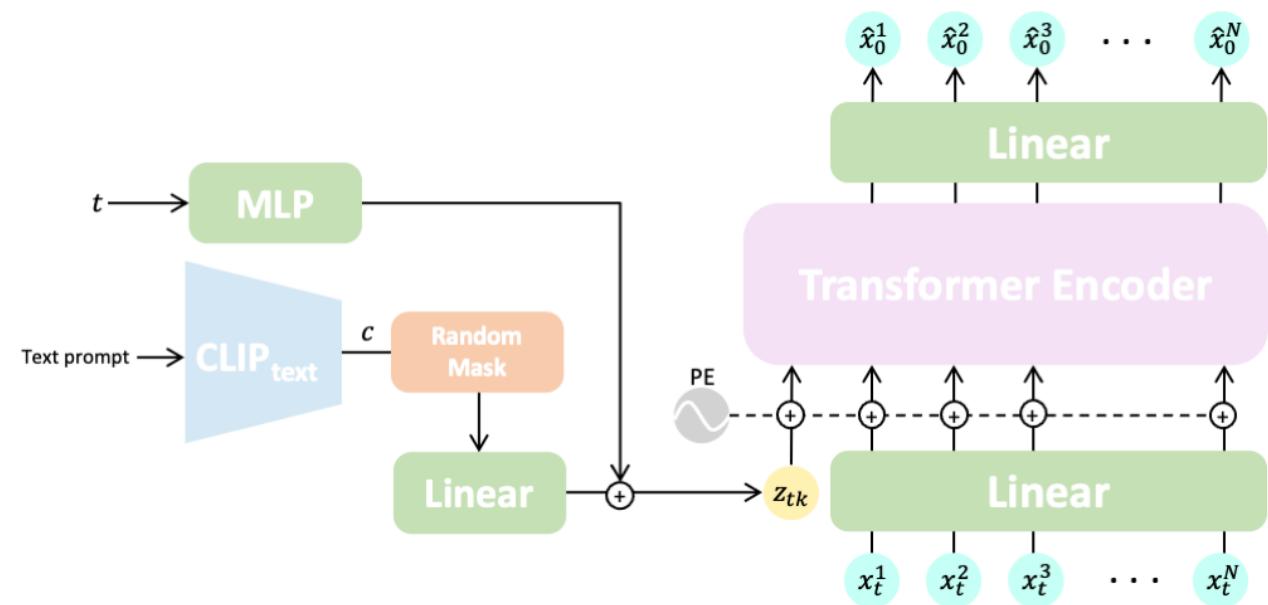
Generate sequence of motion: [Transformer](#)

Conditioned on text prompt: [CLIP embedding](#)

Classifier free training

$$\mathcal{L}_{\text{simple}} = E_{x_0 \sim q(x_0|c), t \sim [1, T]} [\|x_0 - G(x_t, t, c)\|_2^2]$$

predict x_0 directly, instead of predicting the noise



Human Motion Diffusion Model (MDM)

Generate sequence of motion: [Transformer](#)

Conditioned on text prompt: [CLIP embedding](#)

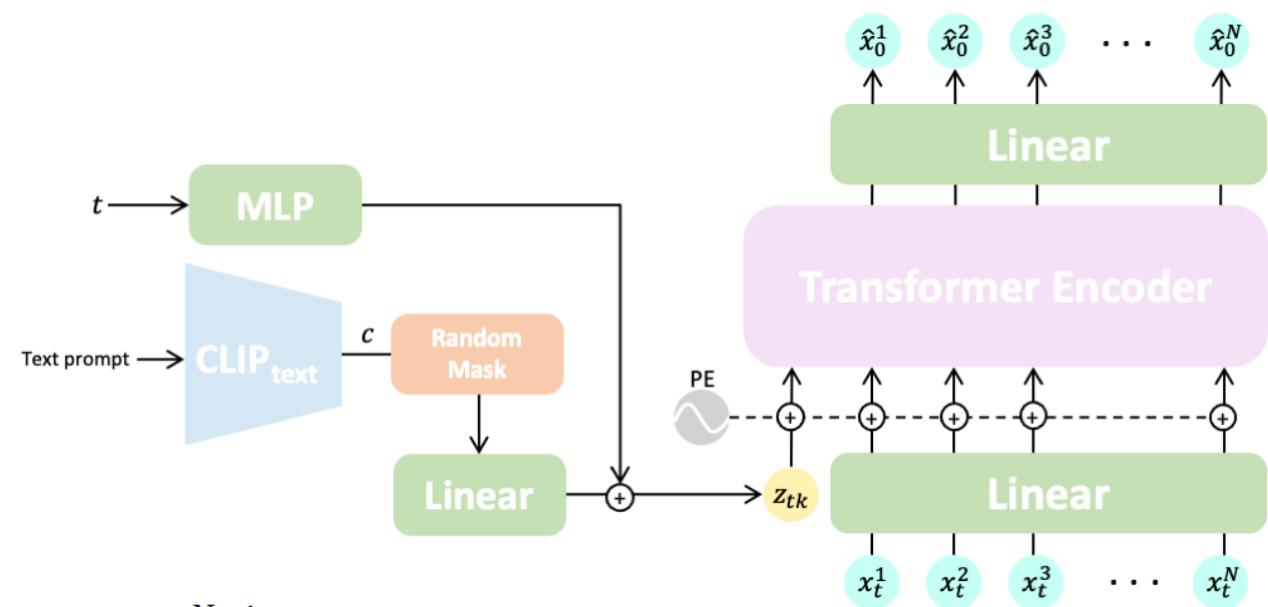
Classifier free training

$$\mathcal{L}_{\text{simple}} = E_{x_0 \sim q(x_0|c), t \sim [1, T]} [\|x_0 - G(x_t, t, c)\|_2^2]$$

Geometric losses

$$\mathcal{L}_{\text{pos}} = \frac{1}{N} \sum_{i=1}^N \|FK(x_0^i) - FK(\hat{x}_0^i)\|_2^2,$$

$$\mathcal{L}_{\text{foot}} = \frac{1}{N-1} \sum_{i=1}^{N-1} \|(FK(\hat{x}_0^{i+1}) - FK(\hat{x}_0^i)) \cdot f_i\|_2^2, \quad \mathcal{L}_{\text{vel}} = \frac{1}{N-1} \sum_{i=1}^{N-1} \|(x_0^{i+1} - x_0^i) - (\hat{x}_0^{i+1} - \hat{x}_0^i)\|_2^2$$



Human Motion Diffusion Model

Guy Tevet

Sigal Raab

Brian Gordon

Yonatan Shafir

Daniel Cohen-Or

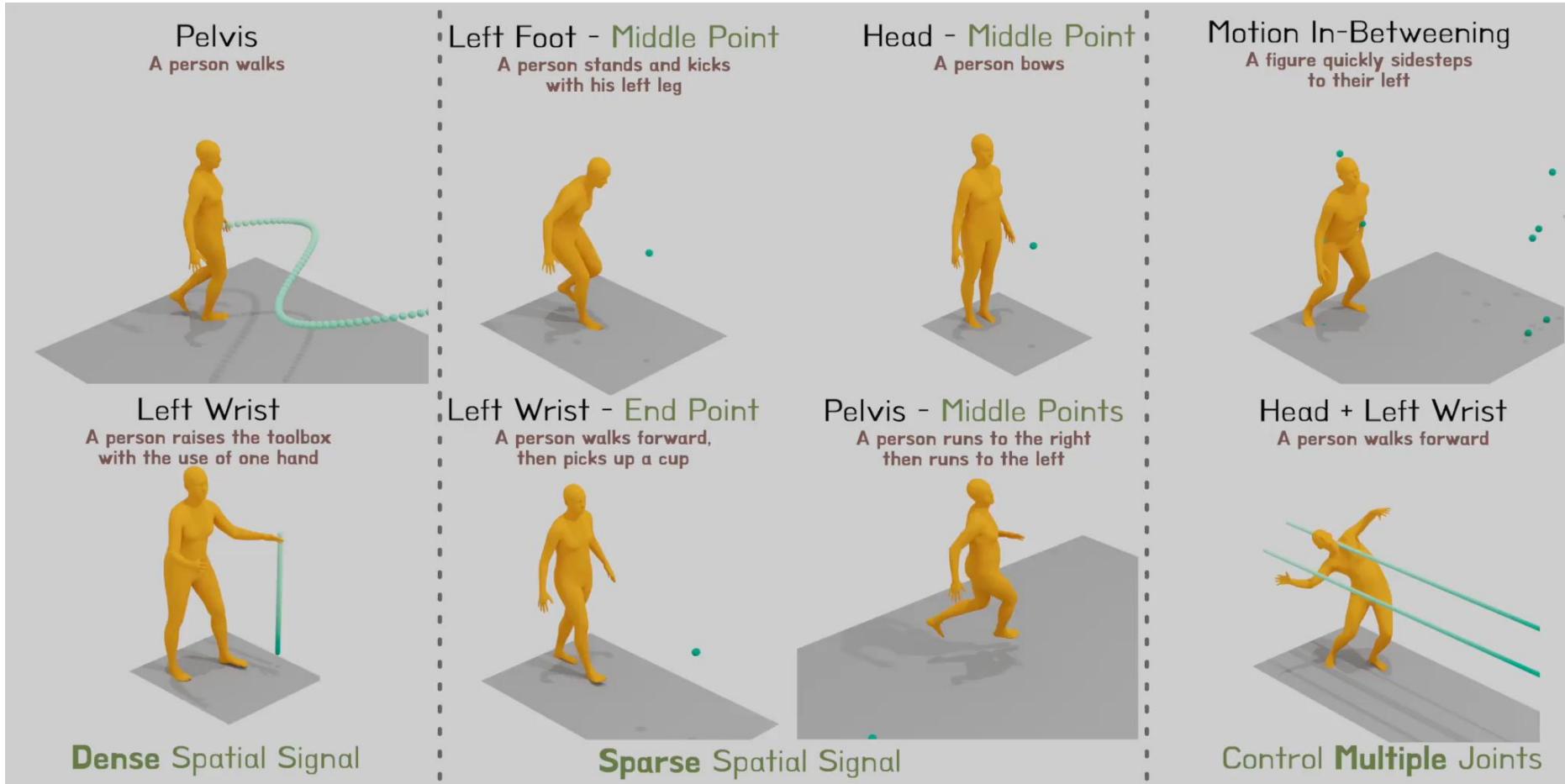
Amit H. Bermano

Tel Aviv University, Israel

Image Diffusion

Motion Diffusion

Omni Control

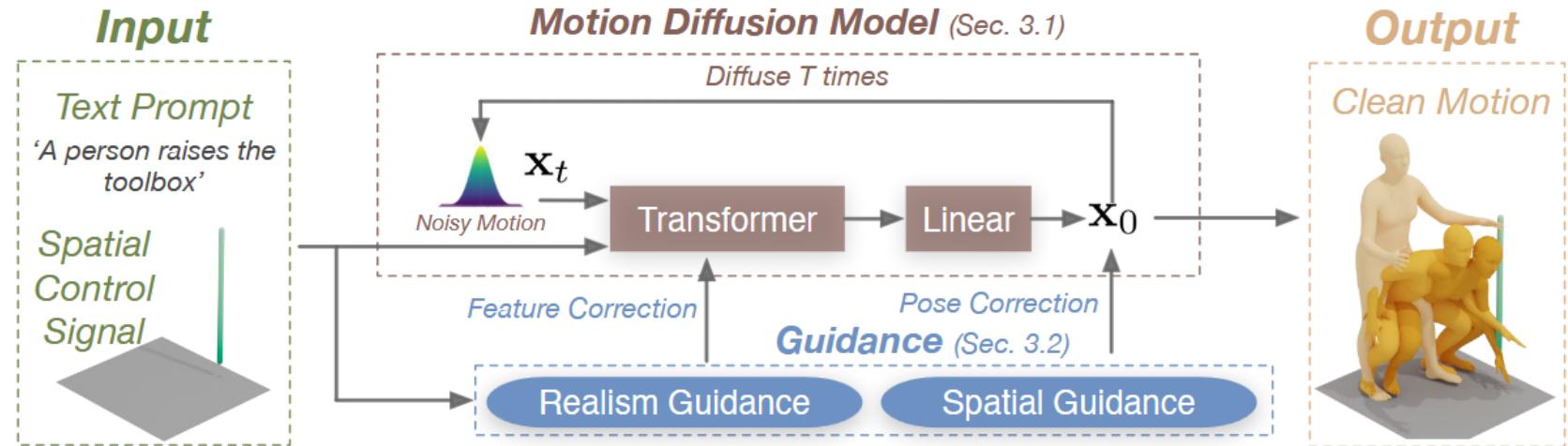


Omni Control

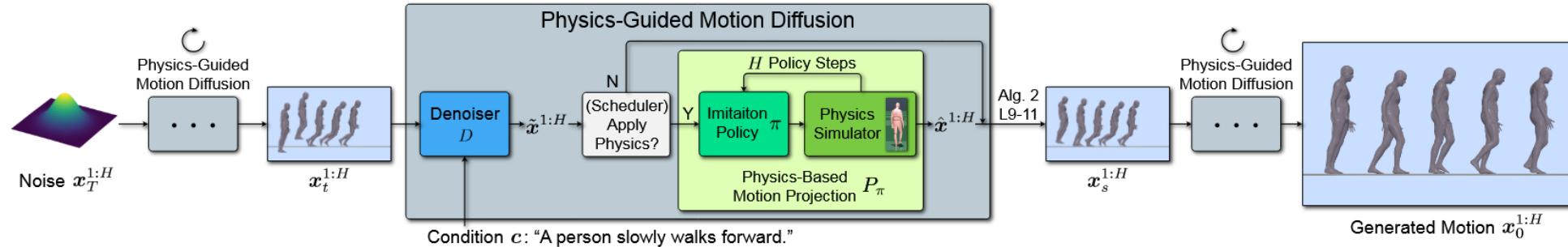
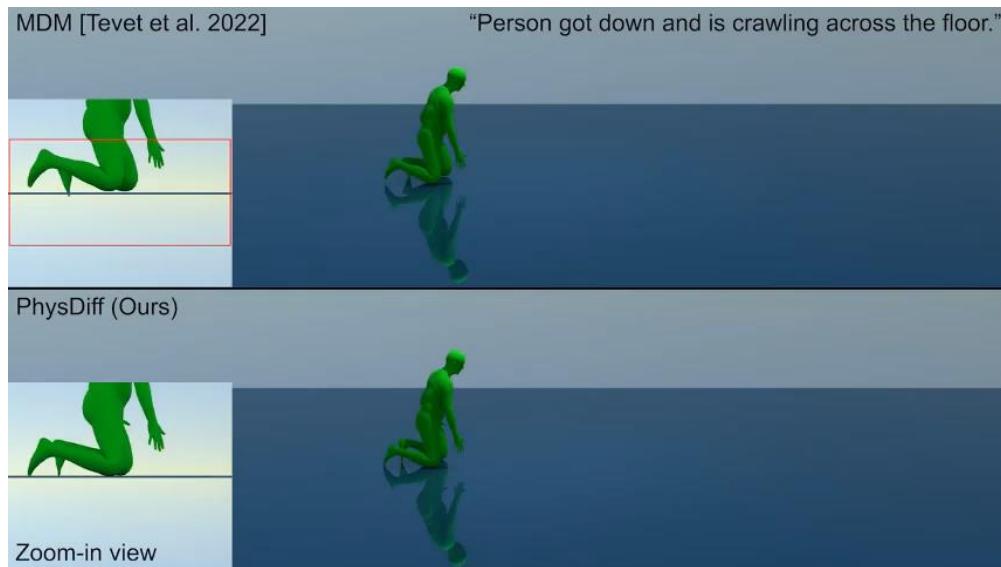
Analytic function for spatial guidance

$$\boldsymbol{\mu}_t = \boldsymbol{\mu}_t - \tau \nabla_{\boldsymbol{\mu}_t} G(\boldsymbol{\mu}_t, \mathbf{c})$$

Realism guidance: a trainable copy of transformer encoder to learn to enforce the spatial constraint



PhysDiff: Physics-Guided Human Motion Diffusion Model



Algorithm 2 PhysDiff sampling algorithm for motion.

```

1: Input: Denoiser  $D$ , sample  $\mathbf{x}_t^{1:H}$  at time  $t$ , condition  $c$ , target time  $s$ , physics-based projection  $\mathcal{P}_\pi$ ,  $\eta \in [0, 1]$ .
2: Compute the denoised motion  $\tilde{\mathbf{x}}^{1:H} := D(\mathbf{x}_t^{1:H}, t, c)$ .
3: if projection is performed at time  $t$  then
4:    $\hat{\mathbf{x}}^{1:H} := \mathcal{P}_\pi(\tilde{\mathbf{x}}^{1:H})$  # Physics-Based Projection
5: else
6:    $\hat{\mathbf{x}}^{1:H} := \tilde{\mathbf{x}}^{1:H}$ 
7: end if
8: # The remaining part is similar to DDIM
9: Obtain variance  $v_s$  as a scalar that depends on  $\eta$ .
10: Obtain mean  $\mu_s$ :
```

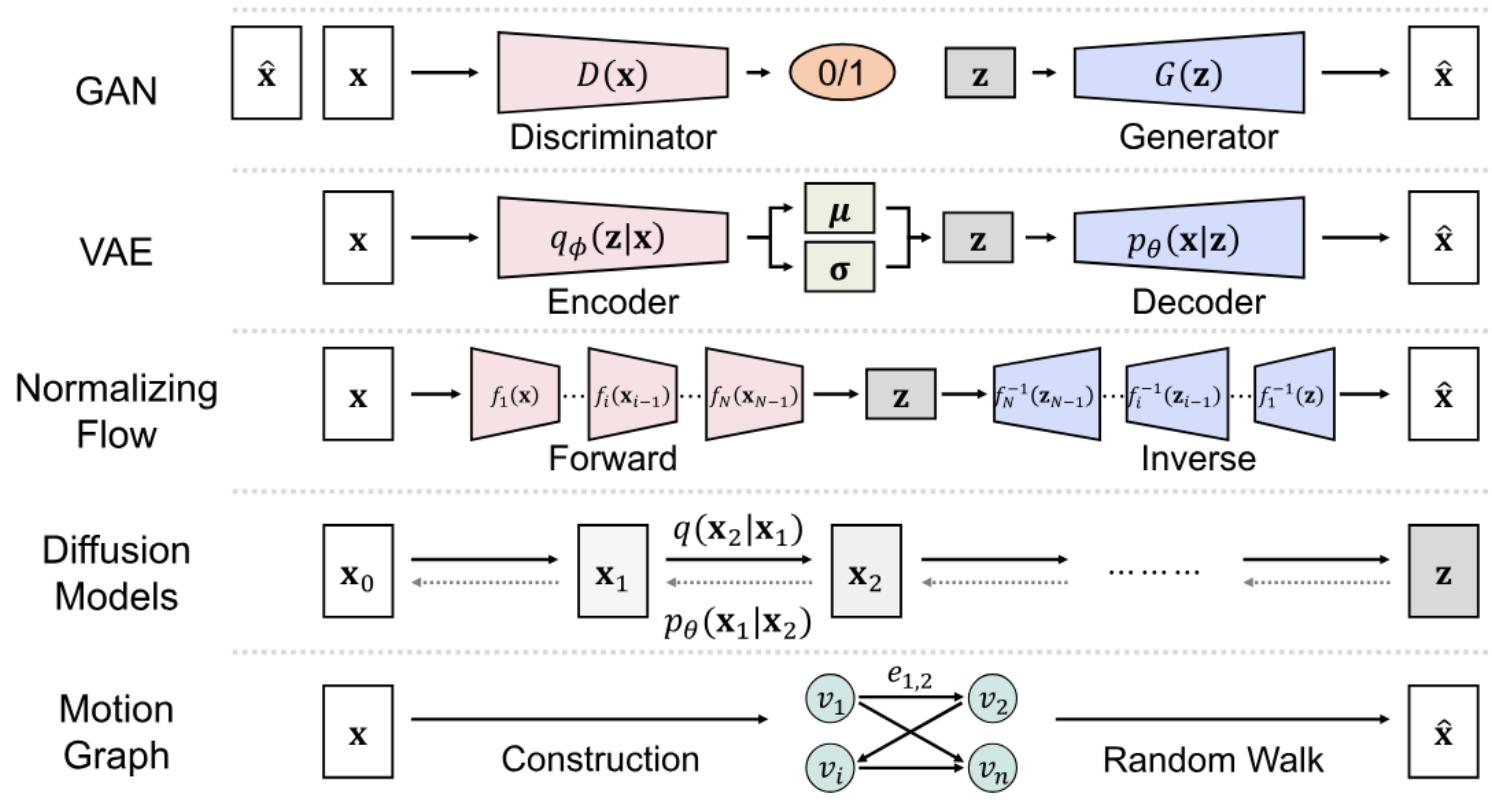
$$\mu_s := \hat{\mathbf{x}}^{1:H} + \frac{\sqrt{\sigma_s^2 - v_s}}{\sigma_t} (\mathbf{x}_t^{1:H} - \hat{\mathbf{x}}^{1:H})$$

11: Draw sample $\mathbf{x}_s^{1:H} \sim \mathcal{N}(\mu_s, v_s \mathbf{I})$.

Problem with diffusion

- Still computationally heavy at training time
- Usually needs large datasets to capture motion diversity

Overview of different generative models



Overview of different generative models

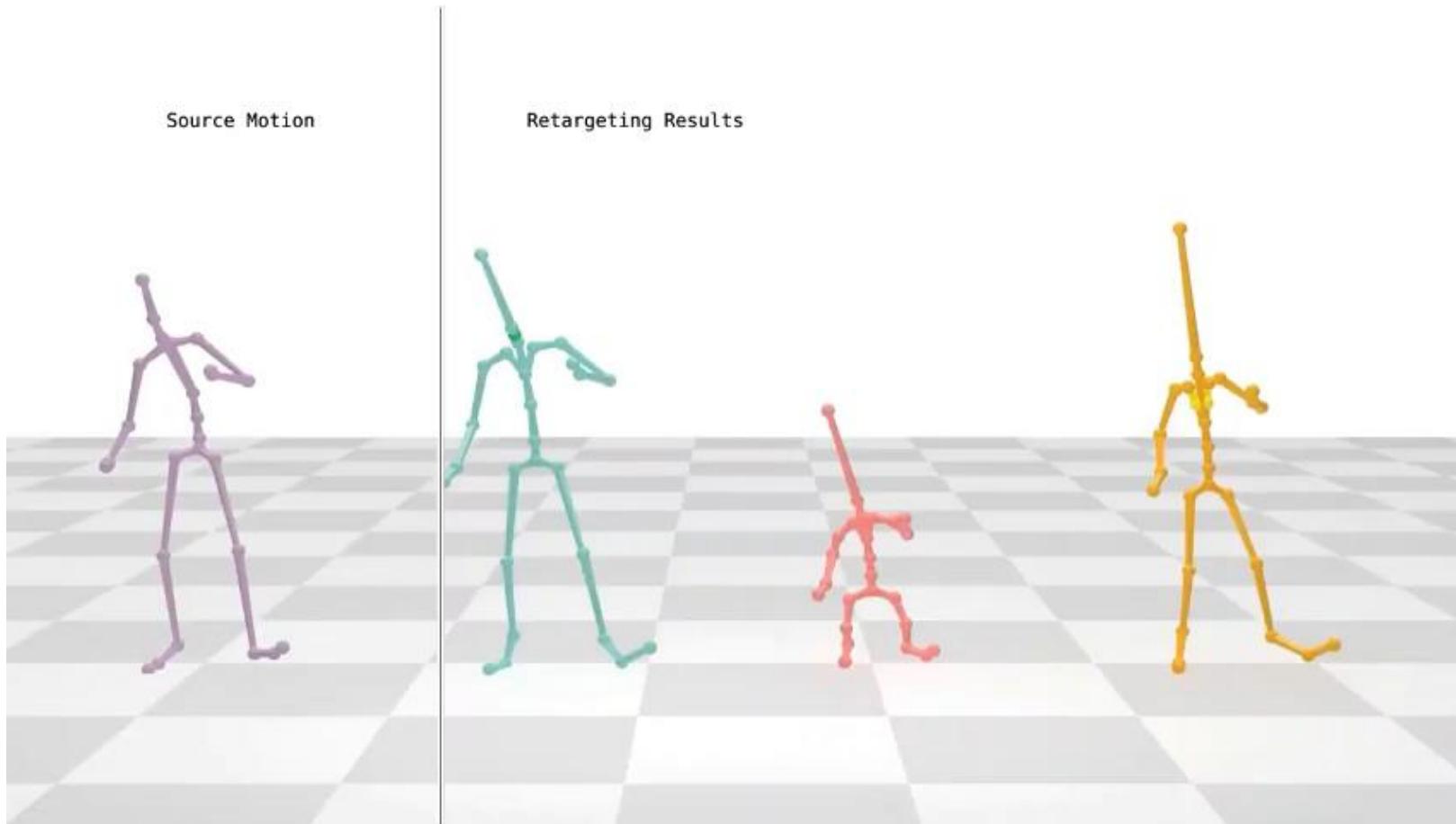
Property	VAE	GAN	Diffusion
Training Stability	Stable	Unstable	Stable
Sample Diversity	Moderate	Moderate	High (multi-modal)
Output Sharpness	Blurry	Sharp	Sharp
Control Conditioning	Manual	Complex	Flexible (guidance)
Inference Speed	Fast	Fast	Slow
Best Use Case	Latent-space interpolation	Stylized generation	Multi-modal and controllable generation

Outline

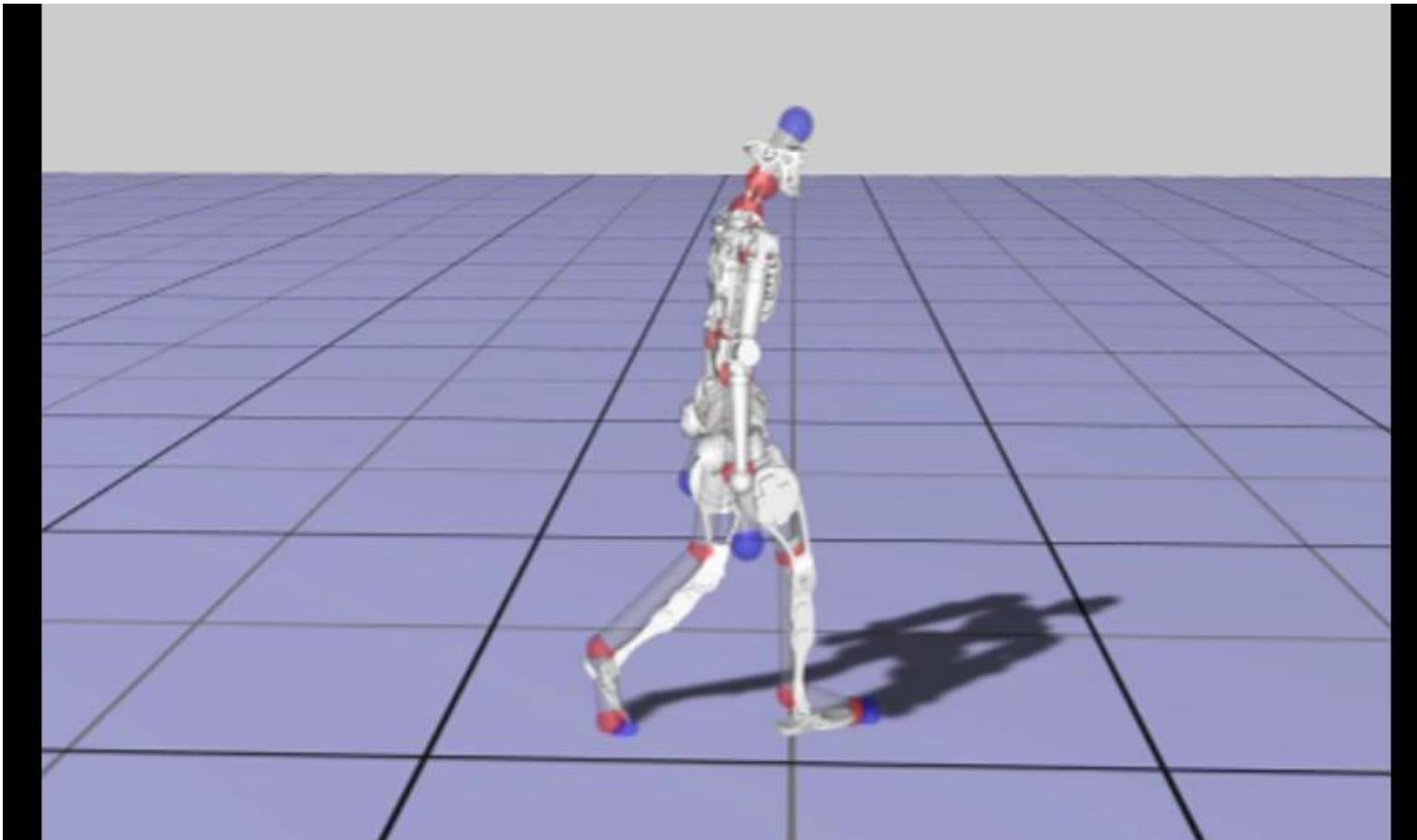
- Recap
- Adversarial methods
- Diffusion-based methods
- Challenges in character animation

Challenges in character animation

Retargeting

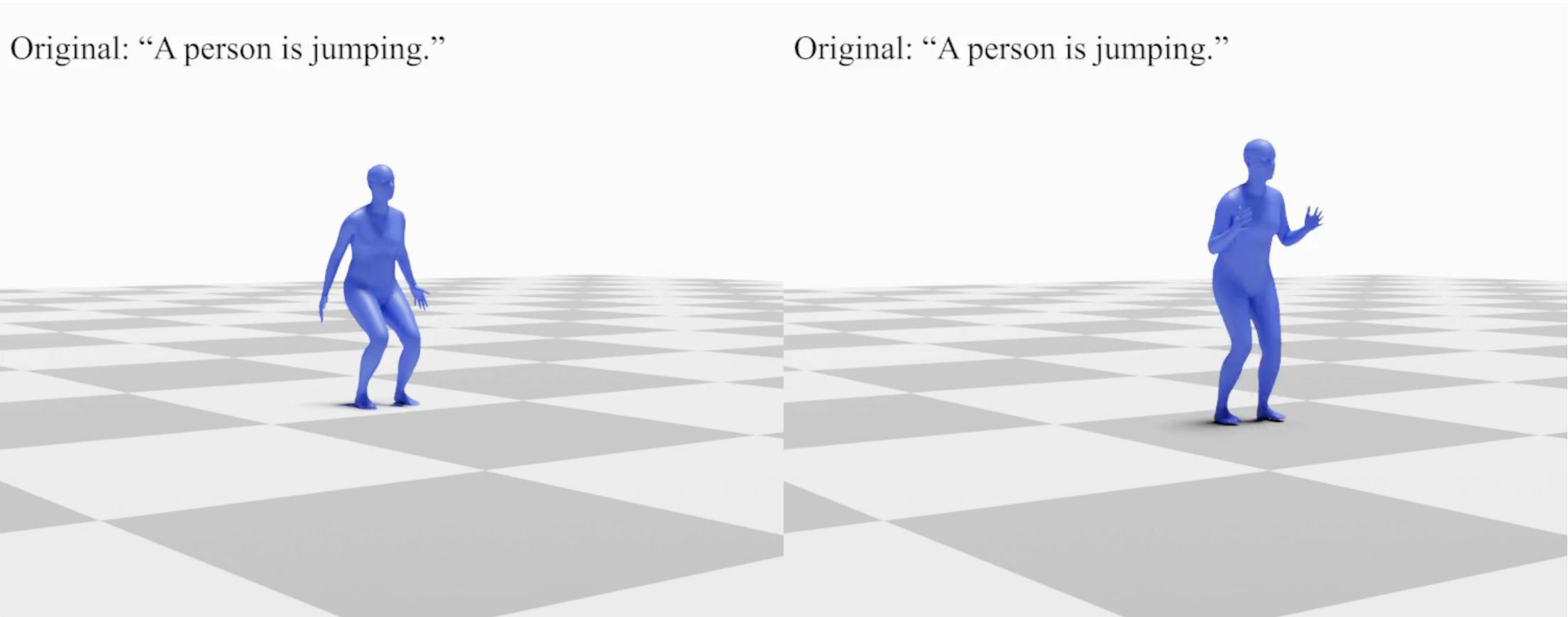


Retargeting

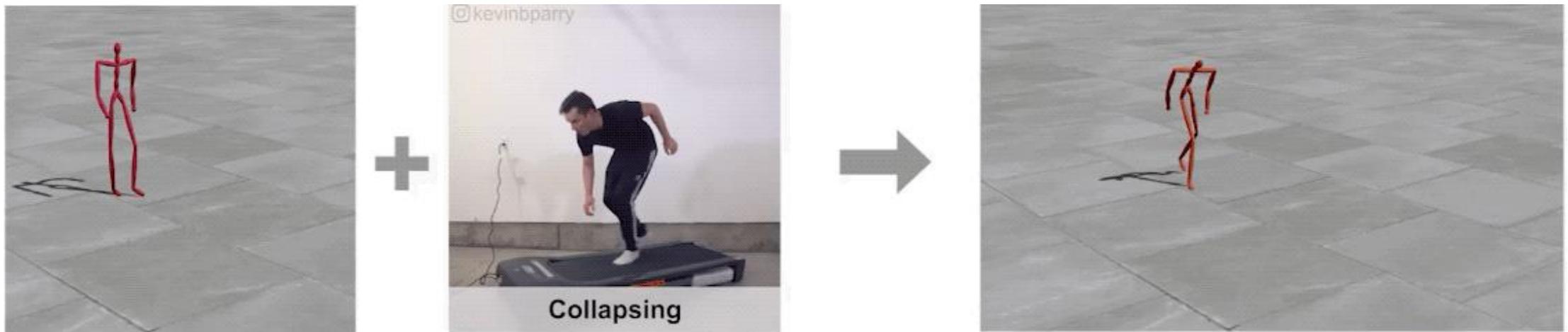


Motion in-betweening / inpainting

Motion editing



Stylization



Thank you!

