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Recap

Given a motion dataset, how do we use It to generate natural and
controllable motion?

* Planning based methods: behavior trees, motion graph, motion matching
» Phase-based methods: PFNN, MANN, DeepPhase

» Tracking-based methods for physics-based animation

« Generative models (VAES) for motion generation



Recap — Generative models

- Estimate the distribution of data "7 oo>"
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Recap — Generative models

« Auto-regressive models

« Variational Autoencoder (VAE)

» Generative Adversarial Network (GAN)
» Flow-based models

» Energy-based models

 Diffusion models (score-based models)



Recap — VAE

» Our data is generated from some latent variable with fixed distribution.
* Maximize (log-)likelinood of the data

x > —>|_h_ > —>
I ILatentl I
Input Encoder Space Decoder Output

VAEs offer smooth latent spaces but suffer from blurry or mean-like outputs (due to
Gaussian likelihood and KL penalty).



Today’s focus

Adversarial methods

Diffusion models

How these are used in motion generation and character control

How can we generate highly realistic, diverse, and controllable character motion?

Both kinematic and physics-based examples

Current Challenges in character animation
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Generative Adversarial Networks (GAN)



Generative Adversarial Networks (GAN)
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Generative Adversarial Networks (GAN)
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Generative Adversarial Networks (GAN)
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Generative Adversarial Networks (GAN)
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Generative Adversarial Networks (GAN)

Discriminator: tries to classify
real/fake images

Random Generated
Noise Ganerater Output

Generator: tries to generate
outputs that fool the discriminator
into being real

Training
dataset £

Lp = Error(D(z),1) + Error(D(G(z)), 0)

Lg = Error(D(G(2)),1)

Goodfellow, lan, et al. "Generative adversarial networks.” Communications of the ACM 63.11 (2020): 139-144.

https://jaketae.github.io/study/gan-math/
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Generative Adversarial Networks (GAN)

Discriminator: tries to classify
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real/fake images
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into being real Fﬂ
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Training
dataset

Lp = Error(D(z),1) + Error(D(G(z)),0) = mSX{log(D(x)) + log(1 — D(G(2)))}

Lo = Brrox(D(G(2)),1) = min{log(1 — D(G(2))))

Goodfellow, lan, et al. "Generative adversarial networks." Communications of the ACM 63.11 (2020): 139-144. 15
https://jaketae.github.io/study/gan-math/



Generative Adversarial Networks (GAN)

Discriminator: tries to classify
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Training
dataset

Lp = Error(D(z),1) + Error(D(G(z)),0) = mSX{log(D(x)) + log(1 — D(G(2)))}

Lo = Brrox(D(G(2)),1) = min{log(1 — D(G(2))))

V(G,D) = m(%n mgx{log(D(:c)) +log(1 — D(G(2)))}

Goodfellow, lan, et al. "Generative adversarial networks." Communications of the ACM 63.11 (2020): 139-144. 16
https://jaketae.github.io/study/gan-math/



Generative Adversarial Networks (GAN)

Training GANSs requires good balance between generator and discriminator

V(G,D) = min mg,x{log(D(a:)) +log(1 — D(G(2)))}

* |If discriminator is strong:
generator gets no feedback for small improvements

« If discriminator is weak:
can’t distinguish real/fake, so no informative feedback

Mescheder, Lars, Andreas Geiger, and Sebastian Nowozin. "Which training methods for GANSs do actually converge?.” International conference on
machine learning. PMLR, 2018.



Generative Adversarial Networks (GAN)

Issue: the discriminator may assign nonzero gradients on the manifold of real data samples

Solution: add gradient penalty to the discriminator loss

EF'D () [H VD’L ('KE)

]

Mescheder, Lars, Andreas Geiger, and Sebastian Nowozin. "Which training methods for GANSs do actually converge?.” International conference on
machine learning. PMLR, 2018.



Motion synthesis as pose prediction
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Motion synthesis as pose prediction

n frames
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Noise

But these poses are not temporally consistent!!
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Motion synthesis as pose prediction

Random Noise
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[ Generator Sequence of future poses

L {
_ (through RNN)
Sequence of previous poses

(through RNN)

G(z) — G(z|x) introducing a prior

Barsoum, Emad, John Kender, and Zicheng Liu. "Hp-gan: Probabilistic 3d human motion prediction via gan." Proceedings of the
IEEE conference on computer vision and pattern recognition workshops. 2018.
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Motion synthesis as pose prediction

Random Noise
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adversariql loss WGAN loss
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bone length loss regularization loss

Barsoum, Emad, John Kender, and Zicheng Liu. "Hp-gan: Probabilistic 3d human motion prediction via gan." Proceedings of the
IEEE conference on computer vision and pattern recognition workshops. 2018.
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Motion synthesis as pose prediction

Random Noise
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Probabilistic model: can get diverse outputs by sampling different z

Barsoum, Emad, John Kender, and Zicheng Liu. "Hp-gan: Probabilistic 3d human motion prediction via gan." Proceedings of the

IEEE conference on computer vision and pattern recognition workshops. 2018. 23



Motion synthesis as pose prediction
Longer horizons
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Gui, Liang-Yan, et al. "Adversarial geometry-aware human motion prediction.” Proceedings of the european conference on computer vision (ECCV). 2018.
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Motion synthesis as pose prediction
Longer horizons

I — >+ —> 384 35558 —| Diseriminator | ke
Predictor | Prediction | 1
MM& _5 Encoder > Decoder “—3’(}\%“&; -
Conditioning “ Geodesic Loss | -Fic-iel-ity —> Real‘,or o
motion MW fake? | Discriminator
% . Grdu;:ldti'uth
Seed motion X i . (}\ﬁ\j\(}.“‘; ﬂx @? % %ﬁ&\

Geodesic distance in SO(3) instead of Euclidean distance
Dual discriminator

Gui, Liang-Yan, et al. "Adversarial geometry-aware human motion prediction.” Proceedings of the european conference on computer vision (ECCV). 2018.
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Carnegie Mellon

Aperiodic Activity: Taking Photo
(in slow motion: 400ms displays in 10s)

Residual sup. Our Model

Closer to groundtr

Martinez, Black, and Romero, 2017,

26



GANSs can learn from low amount of data

GANimator Random Generation

e

Input Motion

Li, Peizhuo, et al. "Ganimator: Neural motion synthesis from a single sequence.” ACM Transactions on Graphics (TOG) 41.4 (2022): 1-12.
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How about physics-based?

Need to predict actions

Ki " State sequence
lnergal IC or
L1901 next state
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next state
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GAN (Kinematic)
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GAN (Physics-based)
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GAN (Physics-based)

not differentiable
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Generative Adversarial Imitation Learning



Generative Adversarial Imitation Learning
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Generative Adversarial Imitation Learning

Ex[log(D(s,a))] + Exy[log(1l — D(s,a))] — AH ()
policy expert policy

Algorithm 1 Generative adversarial imitation learning

1: Input: Expert trajectories 7z ~ 7, initial policy and discriminator parameters 6, wy
2: for:=10,1,2.... do

3:  Sample trajectories 7; ~ 7,
4:  Update the discriminator parameters from w; to w; with the gradient
En [V log(Dy(s,a))] + IE:'TE [V log(l — Dy(s,a))] (17)

5. Take a policy step from 6; to 6,1, using the TRPO rule with cost function log(D,,, , (s, a)).
Specifically, take a KL-constrained natural gradient step with
E. [Vologm(als)Q(s,a)] — A\VeH (my). (18)
where Q(5,a) = E, log(Duw,.,(s,a))|s0o = 5,a0 = aj

6: end for

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning." Advances in neural information processing systems 29 (2016). 34



Generative Adversarial Imitation Learning

ry = —log(1 — D((sy,a;)) or 1, =log(D((s,a;))  discriminator-as-reward

minimizes Jensen-Shannon divergence between dM (s,a) and d” (S, a)

v N

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning." Advances in neural information processing
systems 29 (2016).



But for motion, we have no action in the demonstration!!



But for motion, we have no action in the demonstration!!

argﬁt}nin —Egm(sg) [log (D(s,8"))| = Bgr(ssy |log (1 — D(s,8"))] .

Real
o)
arg min —E m . . [log (D(s,a))] — Egz(ga) [log (1 = D(s,a))]. 20 _Neo Q
2 dM(s,2) d” (s,2) {sva) 5 5
d a-09=0>
(s, 8) >0\ Q Fake

Discriminator

Faraz Torabi, Garrett Warnell, and Peter Stone. 2018. Generative Adversarial Imitation from Observation. CoRR abs/1807.06158 (2018). arXiv:1807.06158
http://arxiv.org/abs/1807.06158



Adversarial Motion Priors

arg min B m g o) l(D(s, s") — 1]2} + By (s I(D(S,S’) ~ 1)2]
D . .

r(st, S+1) = max |U, 1 —0.25(D(s¢,8¢41) — 1)2| )

Style reward

i G Gy o S.S.
r(se,ar, sr+1,8) =wr (se,ar, S, ) + wr (s, 8r+1).

Goal (Task) reward

[ Policy

Environment
J -
St
Dataset \ 4
[ Motion Prior | TS
g ;
r reference simulation (+:
Task TG
% t
| 9
) g
‘e

Peng, Xue Bin, et al. "Amp: Adversarial motion priors for stylized physics-based character control.” ACM Transactions on

Graphics (ToG) 40.4 (2021): 1-20.
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Adversarial Motion Priors

gradient penalty

arg min  E m g o I(D(tb(s},ib(s’)) - 1)2|
2 P

+Egr (s.5) [(D (B(s),@(s")) + 1)2|

w&P

2
+ T Edﬁv{(ﬁgﬁr) U|V¢D(¢)|¢=(¢{HL‘D(‘=’]]H ‘ !

Dataset

A

[ Policy

Environment
J -
St
\ 4
[ Motion Prior | N
- - rt

\.- J/.--.\\

p-. . b
S

Task

reference simulation

Peng, Xue Bin, et al. "Amp: Adversarial motion priors for stylized physics-based character control.” ACM Transactions on

Graphics (ToG) 40.4 (2021): 1-20.
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Adversarial Motion Priors

ALGORITHM 1: Training with AMP

while not done do
for trajectory i = 1,...,m do

) Environment Polic
Tt — {(84, ay, r?)iﬁl, S‘Tj, g} collect trajectory with - a; [ y
for timestept =0,...,T — 1 do [ < %
dy < D(®(s¢), P(s1+1)) A = l
S

r; « calculate style reward according to Equation 7 using d;

Fy < wGrtG+wSrrS St ? ?
record ry in 7t Dataset v
end for = [ Motion Prior | S
store 7' in B A —> P d Tt
end for v A
for update step =1, ...,n do Task G G-
M — sample batch of K transitions {(s;, *-,3) }le from M X Tt
b « sample batch of K transitions {(Sﬁsjf;' }_‘f‘zl from B R e S g
update D according to Equation 8 using b and b \\.
end for

. . : iym
update V and 7 using data from trajectories {7' }'",
end while

Peng, Xue Bin, et al. "Amp: Adversarial motion priors for stylized physics-based character control.” ACM Transactions on 40
Graphics (ToG) 40.4 (2021): 1-20.



Adversarial Motion Priors

Humanoid: Target Heading (Locomotion)

Example Clips

f
e p—
‘l

=)

By combining the motion prior
with additional task objectives,

Peng, Xue Bin, et al. "Amp: Adversarial motion priors for stylized physics-based character control.” ACM Transactions on
Graphics (ToG) 40.4 (2021): 1-20.
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Adversarial Motion Priors

Advantages:
« Can generate novel motions

 Can learn from low amount of data
* Flexible

« Learning is easier

|5t — ST Djs{p(s, s, p(s,s')"}

Motion Tracking AMP

Peng, Xue Bin, et al. "Amp: Adversarial motion priors for stylized physics-based character control.” ACM Transactions on
Graphics (ToG) 40.4 (2021): 1-20.



AMP follow-ups

Luo, Zhengyi, et al. "Perpetual humanoid control for real-time simulated avatars.” Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2023.

43



AMP for robots

Escontrela, Alejandro, et al. "Adversarial motion priors make good substitutes for complex reward functions." 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022. 44



AMP for robots

Multiple skills More control

© 'bfsnzp

Vollenweider, Eric, et al. "Advanced skills through multiple adversarial motion priors in reinforcement learning.” 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2023.

Zargarbashi, Fatemeh, et al. “RobotKeyframing: Learning Locomotion with High-Level Objectives via Mixture of Dense and Sparse Rewards” in
Proceedings of The 8th Conference on Robot Learning (CoRL 2024) 270 (PMLR, 2025),916.
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Problem with GAN and GAIL

Mode collapse

Iteration 1 Iteration 100K Iteration 500K Iteration 1000K
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https://medium.com/@miraytopal/what-is-mode-collapse-in-gans-d3428a7bd9b8



Problem with GAN and GAIL

Mode collapse

Iteration 1

As long as generator’'s output is TS I R ey
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How to avoid mode collapse?

Introduce a random/probabilistic prior

48



Adversarial Skill Embeddings

max —Djs (1:1‘”'r (s,s")
T

dM(s, s’)) +p1 (s, s’;z|:?r) .

motion imitation

mutual information

I(X;Y) = H(X) — H(X|Y) = H(Y) — H(Y|X)

I(s,s8";z|m) = H(s,s'|n) — H(s, s |z, ).

skill discovery

Pre-Train Ing 'ﬁ Discriminator |

8
AK.\ A
dataset simulation
L

A
L/

Encoder

Dataset

:
Z
.x\
A
]
A

Low-Level Policy

Peng, Xue Bin, et al. "Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters.” ACM

Transactions On Graphics (TOG) 41.4 (2022): 1-17.
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Adversarial Skill Embeddings

I(s,s8";z|m) = H(s,s'|m) — H(s,s |z 7).
but this is intractable to compute

I(s,s";z|m) = I(z;s,s"|7)

— %) — H(zls, s, 7). variational approximation  g(z|s,s’) cncoder
constant

argmax  E, ) Ep(7)n2) | Z y'(—log (1 —D(s¢se41)) +Plogq(zlse,se+1))|.
re = —log (1 — D(s¢,s¢+1)) + B log g (z¢|s¢, st+1) -

Peng, Xue Bin, et al. "Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters.” ACM
Transactions On Graphics (TOG) 41.4 (2022): 1-17.
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Adversarial Skill Embeddings

Dataset

What prior distribution?

p(z) = N (0,1) o
' istribution i . . _"t_._'__—__?“— T
Gaussian distribution is unbounded —> unrealistic motions - Diseriminator y

Z/\- \ 4_
rt f\ dataset simulation )
NS Encoder
e

z~N(0I), z=z/l|Z]. !

Low-Level Policy

| <

Peng, Xue Bin, et al. "Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters.” ACM 51
Transactions On Graphics (TOG) 41.4 (2022): 1-17.
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Adversarial Skill Embeddings

Dataset

1
skill encoder  q(z[s,s”) = — €Xp (K pg (s, s")Tz)

2 ) i
______________ i
Pre-Trammg 'ﬁ Discriminator |

max B, ;) Egr(ssz) }cyq(s,s’)Tz]

q

DA

Tt A
N

L/

Encoder

the encoder can then be trained by maximizing the i oz |e—z i
log-likelihood of samples (z, s, s') collected from the policy : \4\‘ e

v

Low-Level Policy

| <

Peng, Xue Bin, et al. "Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters.” ACM 52
Transactions On Graphics (TOG) 41.4 (2022): 1-17.




Adversarial Skill Embeddings

diversity objective

T-1

arg max EP(Z)EP(TIH,Z) ’ Z ]/r( —log (1 = D (s¢,8¢+1))
T t=0

+ f log q (z¢|s¢t, st+1) )‘

A
L/

Dx1, (n(:|s,z1), 7("[s, z2)) 1)2

— Wiy Egr (s) Ezl,22~p(2} ( D, (z1,2z2)

Encoder

.
Z
.x\
A
]
A

Dataset

v

Low-Level Policy

Peng, Xue Bin, et al. "Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters.” ACM
Transactions On Graphics (TOG) 41.4 (2022): 1-17.




Adversarial Skill Embeddings

r'er =wg ?‘G (Sr, as, St+1, g) — W§ log (1 — D(st,8t+41))

Hierarchical method

High-Level Policy

| Ge: [P s

Low-Level Policy

Peng, Xue Bin, et al. "Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters.” ACM 54
Transactions On Graphics (TOG) 41.4 (2022): 1-17.



Adversarial Skill Embeddings

Adversarial Skill Embeddings

Pre-Training Task-Training

2P

Our framework consists of two stages:
a pre-training stage, and a task-training stage.

Peng, Xue Bin, et al. "Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters.” ACM
Transactions On Graphics (TOG) 41.4 (2022): 1-17.
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ASE follow-ups

CALM / C.ASE
Conditioning — Tackling mode collapse

Motion Coverage Rate

C.ASE
1000 ASE 1000 CALM 1000
900 900 900
>, 800 800 800
U 700 700 700
GC) 600 600 600
=5 500 500 500
o 400 400 400
D 300 300 300
T 200 200 200
100 100 100
! 0 - 0 -
Motion ID Motion ID Motion ID

Tessler, Chen, et al. "Calm: Conditional adversarial latent models for directable virtual characters." ACM SIGGRAPH 2023 Conference Proceedings. 2023.
Dou, Zhiyang, et al. "C- ase: Learning conditional adversarial skill embeddings for physics-based characters.” SIGGRAPH Asia 2023 Conference Papers. 2023.
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« Challenges in character animation
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GAN Diffusion

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis.” Advances in neural information processing systems 34 (2021): 58
8780-8794.



Diffusion

Various images generated by DALL-E 2
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Diffusion

Random
Noise
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Generator

Generated
Output
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Diffusion

Add noise, learn to denoise

Forward process (data — noise)

Reverse process (noise — data)

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models.” Advances in neural information processing systems 33 (2020): 6840-6851.

Song, Yang, et al. "Score-based generative modeling through stochastic differential equations.” arXiv preprint arXiv:2011.13456 (2020).
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Diffusion

In diffusion, the forward process is modeled by a Markov chain: probability of each event only
depends on the previous event

The transitions are Gaussian q(xe|xs-1) := N (x4, )

Q(Xt|xt—1) = N(Xt; V 1 — Bixy—1, 5::1)
g(x1.r|x0) = [T,y a(xelxe—1) = [T, N (xt; VI = Bexe—1, Be])

Forward process (data — noise)

Reverse process (noise — data)

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models.” Advances in neural information processing systems 33 (2020): 6840-6851.

Song, Yang, et al. "Score-based generative modeling through stochastic differential equations.” arXiv preprint arXiv:2011.13456 (2020). o2



Diffusion

Learn the reverse process

dependent on step

T
po(X0.7) = p(x7 H (x¢—1|x¢), PH(Xt—1|Xt) — N(Xt 1 He (Xta ) EH(Xta t))
=t parameterized by NN

Forward process (data — noise)

Reverse process (noise — data)

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models.” Advances in neural information processing systems 33 (2020): 6840-6851.

Song, Yang, et al. "Score-based generative modeling through stochastic differential equations.” arXiv preprint arXiv:2011.13456 (2020). o3



Diffusion

Learn the reverse process:
Find the reverse Markov transitions that maximize the likelihood of the training data p(ﬁﬁo)

E[—logpg(x0)] < Eq|—log Ps (Xo:1) = E,| —logp(xr) — ) log Po(Xe—1lxi) | _ p
q(x1:7[%0) =t q(x¢|x:_1)

variational upper bound

Forward process (data — noise)

Reverse process (noise — data)

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models.” Advances in neural information processing systems 33 (2020): 6840-6851.

Song, Yang, et al. "Score-based generative modeling through stochastic differential equations.” arXiv preprint arXiv:2011.13456 (2020). o4



Diffusion

PH(Xt—l‘Xt) = N(Xt—l Nﬂ(xt: ) ZH(Xt t)) Eﬂ(xta ) — UtI

q(x¢|x0) = N (x¢; vVarxo, (1 — a)I)
reparameterization Xt(XUj 6) — /X + \/1 — i€ for € ~ N(O, I]

Po(Xt,t) = \/la—t (Xt— \/lﬁ%ateg(xt, ))

Loss can be simplified to:

Lsimple(g) = ]Et,xo,e I:”E o 69(\/@7?5}{0 T v 1 — Q£ €, t)H2:|

Denoising Diffusion Probabilistic Models (DDPM)

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models.” Advances in neural information processing systems 33 (2020): 6840-6851.

Song, Yang, et al. "Score-based generative modeling through stochastic differential equations.” arXiv preprint arXiv:2011.13456 (2020).



DDPM

Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: x7 ~N(0,1)
2: onq(_xo) 2: fort=1T,...,1do
RN [J{;l(l(f)mif)n({la > T}) 3: z~N(0,1)ift > 1,elsez =0
. € n ’ =
5: Take gradient descent step on 4 X1 = \/L—t (Xt - \}Tfa—%@ (Xtat)) T 012
Vo He—eg(\/&tx0+\/1 —@te,t)||2 5: end for
6: until converged 6: return X

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models.” Advances in neural information processing systems 33 (2020): 6840-6851.
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How to control the output?

Need to introduce conditions — maximize likelihood of conditional training data p($0|y)

p(z:)p(ylz:)
p(y)

V. logp(x:) — Vg, log p(a|y) Vlogp(z:ly) = Vlog ( ) = Vlogp(z;) + Vlog p(y|z:)

Train a classifier on noisy data [ (y|z¢)

Then use the gradient Vs, logfs(y[z:) to guide diffusion sampling process: Classifier Guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (pg(z;), Xg(z¢)), classi-
fier f;(y|z:), and gradient scale s.

Input: class label y, gradient scale s
z7 + sample from N(0,I)
Only at inference time for all ¢ from 7' to 1 do
2 Y+ }UJG(wt): Eﬁ(xt)
x—1 < sample from N (p + sX V,, log f5 (y|zt), X)
end for
return z;

67
Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis.” Advances in neural information processing systems 34 (2021): 8780-8794.



How to control the output?

Classifier-free guidance

Classifier doesn’t need to be explicitly learned

th logp(y‘xt) — th logp(xt|y) o th logp(xt)
1

— —ﬁ (ea(xt,t,y) — 69(xt,t))

€o(x1,t,y) = €p(xt, 8, y) — V1 — & wVy, log p(y|x:)
— Eg(Xt, L, y) + ’U)(Eg(xt, t, y) - Eﬂ(xt: t))
= (w + 1)eq(xt,t,y) — weg(xy,t)

conditional unconditional

Unlike classifier guidance, it requires specific training.

Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance.” arXiv preprint arXiv:2207.12598 (2022).

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

po(x) parameterized through eg(x;,t)

€o(x¢,t) = €o(xe, t,y = D).
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Human Motion Diffusion Model (MDM)

Tevet, Guy, et al. "Human motion diffusion model." arXiv preprint arXiv:2209.14916 (2022).



Human Motion Diffusion Model (MDM)

Generate sequence of motion: Transformer

'i: 4 .-"f(: _," f ’—.'*" f f'F_.frP : ' r. L
o2\, UJ ¥ [/ ff“"'*’ a8
Al (/R
(o} ' o o
o o ” L N 1.\_ *IL\' 1'-.\'& L 1|"L. L, \H
Generator Motion seguence

Tevet, Guy, et al. "Human motion diffusion model." arXiv preprint arXiv:2209.14916 (2022).



Transformers

Another way to represent sequence data

RNN based Encoder Transtormer's Encoder

Encoder

LW = L — | N —p | —p
(Transformer)

! B T

1ot
NI A P

https://jinglescode.github.io/2020/05/27/illustrated-guide-transformer/




Transformers

Muttiple Mtewtion

(how velevwant is a word in the sentence relevant to other words)

The The Cat ls Black
Cat The Cat lo Black
s The Cot lo Black
Black The Cat lo Black

Output

Probabilities
t
| Softmax )
t
| Linear |
@ ™
| Add & Norm J=
Feed
Forward
|
e 1 N\ | Add & Norm Je=
@, 2 Multi-Head
Feed Attention
Forward ) Nx
| ( )
Add & Norm _je=
N x I
~| Add & Norm ) Ve
Multi-Head Multi-Head
Attention Attention
A2 VT
\_ J . _JJ
Positional Positional
Encodi D ¢ '
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

https://jinglescode.github.io/2020/05/27/illustrated-guide-transformer/

(shifted right)



Human Motion Diffusion Model (MDM)

Generate sequence of motion: Transformer

Conditioned on text prompt: CLIP embedding

Z
\) o ° LS S A ;?E,__j s L8
o — MY
ol%° L\ R A w L
o v N o b Loy
erson waviv .
7 person waving Generator Motion sequence

Tevet, Guy, et al. "Human motion diffusion model." arXiv preprint arXiv:2209.14916 (2022). 3



CLIP Embedding

A multi-modal representation that maps images and text into a shared space

Shared embedding

SpGCB
A
_ @) © OO
T OOO o @)
Documenrts O O
O O o
OOOO O g 8 ©
IP6, O O O
»

@ O Text embeddings

TIPS @)




Human Motion Diffusion Model (MDM)

Generate sequence of motion: Transformer

Conditioned on text prompt: CLIP embedding

& 2z &Y
r A+ 1

Classifier free training

t—>
Esimple — E:cnmq(:rnk:),tw[l,T][Hm[] — G(mta ta C)H%]
predict X directly, instead of predicting the noise e promt —> - . % $ $ $ $

I I I |
xt o xf xf'

Tevet, Guy, et al. "Human motion diffusion model." arXiv preprint arXiv:2209.14916 (2022).



Human Motion Diffusion Model (MDM)

Generate sequence of motion: Transformer

Conditioned on text prompt: CLIP embedding

Classifier free training

t———>
Esimple — E:cnmq(:rnk:),tw[l,T][Hm[) — G(-’Bt, ta C) %
Geometric losses fexprompt—=>
1 N
Lpos = N Z |FK (xf) — FK(23)]35,
1=1
N-— 1 N1 .
Lioot = Z (PR - FK@p) - fills,  Lva =57 D (g™ — =) -

i=1 =1

Tevet, Guy, et al. "Human motion diffusion model." arXiv preprint arXiv:2209.14916 (2022).

- f'())”%
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Human Motion Diffusion Model

Guy Tevet Sigal Raab Brian Gordon  Yonatan Shafir
Daniel Cohen-Or Amit H. Bermano

Tel Aviv University, Israel

https://github.com/andreas128/RePaint

i\ v

Motion Diffusion

Image Diffusion

Tevet, Guy, et al. "Human motion diffusion model." arXiv preprint arXiv:2209.14916 (2022).
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Omni Control

Xie, Yiming, et al. "Omnicontrol: Control any joint at any time for human motion generation." arXiv preprint arXiv:2310.08580 (2023).
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Omni Control

Analytic function for spatial guidance Kt — Kt — Tvp,t G(Hta C)

Realism guidance: a trainable copy of transformer encoder to learn to enforce the spatial constraint

Input Motion Diffusion Model (Sec. 3.1)
T e Thmes
Text Prompt | i
‘A person raises the \ X
toolbox’ i 12
Spatial |

Control
Signal

______________________________________________________

___________________

Xie, Yiming, et al. "Omnicontrol: Control any joint at any time for human motion generation." arXiv preprint arXiv:2310.08580 (2023).
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PhysDiff: Physics-Guided Human Motion
Diffusion Model

Physics-Guided Motion Diffusion

< C

Physics-Guided H Policy Steps Physics-Guided
Motion Diffusion N Motion Diffusion

(Scheduler) ’E'ggﬁ
s elido f S
Physics?
Noise m%jH xlH Physics-Based al
T

Motion Projection

Generated Motion aj ™’

Concriition c: “A person slowly walks forward.”

Algorithm 2 PhysDiff sampling algorithm for motion.

1: Input: Denoiser D, sample :L'}:H at time ¢, condition ¢,
target time s, physics-based projection P, 7 € [0, 1].
Compute the denoised motion &1 := D(z1H ¢, c).
if projection is performed at time ¢ then

&' .= p.(z¥H)  # Physics-Based Projection
~1:H :d;:l:H
end if

# The remaining part is similar to DDIM
Obtain variance v, as a scalar that depends on 7.
Obtain mean y14:

b A S 4
o
=
w
4]

_.
e

#5 = j:lH +

VJE_US (:L‘I:H Al:H)

t —
gt

Zoom-in view 11: Draw sample 27 ~ N (pg, vI).

Yuan, Ye, et al. "Physdiff: Physics-guided human motion diffusion model." Proceedings of the IEEE/CVF international conference on computer vision. 2023.
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Problem with diffusion

« Still computationally heavy at training time
« Usually needs large datasets to capture motion diversity



Overview of different generative models

Discriminator Generator
[ A
VAE X | = | qp(2x) -[ . :|- z |= | _pexlz) |—| %
Encoder Decoder
Normalizing X _.,IE_. z _._.. R
Flow Forward Inverse
Diffusion q(x2x1)
Models b T - X1 | wiiiin, Xo | woviiiiiiaas T @ Z
Po(X1]X2)
€1,2
Motion X @><@ 2
Graph Construction @_.@ Random Walk

Zhu, Wentao, et al. "Human motion generation: A survey." IEEE Transactions on Pattern Analysis and Machine Intelligence 46.4 (2023): 2430-2449.



Overview of different generative models

Property VAE GAN Diffusion

Training Stability Stable Unstable Stable

Sample Diversity Moderate Moderate High (multi-modal)

Output Sharpness Blurry Sharp Sharp

Control Conditioning Manual Complex Flexible (guidance)

Inference Speed Fast Fast Slow

Best Use Case Latent-space Stylized generation Multi-modal and
interpolation controllable

generation
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Outline

* Recap

» Adversarial methods

* Diffusion-based methods

* Challenges in character animation
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Challenges In character animation



Retargeting

Source Motion Retargeting Results

Lee, Sunmin, et al. "Same: Skeleton-agnostic motion embedding for character animation.” SIGGRAPH Asia 2023 Conference Papers. 2023.



Retargeting




Motion Iin-betweening / Inpainting

Agrawal, Dhruv, et al. "SKEL-Betweener: a Neural Motion Rig for Interactive Motion Authoring." ACM Transactions on Graphics (TOG) 43.6 (2024): 1-11.
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Motion editing

Original: “*A person is jumping.” Original: “*A person is jumping.”

Goel, Purvi, et al. "lterative motion editing with natural language.” ACM SIGGRAPH 2024 Conference Papers. 2024.
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Stylization

@) kevinbparty

Aberman, Kfir, et al. "Unpaired motion style transfer from video to animation.” ACM Transactions on Graphics (TOG) 39.4 (2020): 64-1. 90



Thank you!




